首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effect of the histidine-modifier ethoxyformic anhydride (EFA) on the enzymatic properties of the mitochondrial b-c1 complex (ubiquinol-cytochrome c reductase) has been investigated. Chemical modification by EFA inhibited to the same extent the reductase and the proton translocating activity of the complex. In particular EFA modification of the complex resulted in: strong inhibition of the antimycin-insensitive reduction of b cytochromes; inhibition of the antimycin-promoted oxidant-induced reduction of b cytochromes and inhibition of oxidation of pre-reduced b cytochromes. Analysis of the absorbance at 238 nm, indicative of N-(ethoxyformyl)histidine derivative, of the various polypeptide subunits separated by high-pressure liquid chromatography procedure, showed that EFA modified residues in core proteins and in the low-molecular-mass proteins. Both the inhibition of the redox and the protonmotive activity of the complex and the absorbance increase at 238 nm of the core protein fraction were readily reversed by hydroxylamine, indicating that modification of histidine residue(s) in core protein(s) is critical for the activity of the complex. This was supported by the finding that modification of the reductase with EFA prevented binding of fluorescein isothiocyanate to histidine residue(s) in core protein II. EFA modification of the reductase was without effect on the binding of N-(7-dimethylamino-4-methylcoumarinyl)maleimide to the various polypeptides of the complex except for the binding to the Fe-S protein which was greatly potentiated. Thus primary chemical modification of histidine residue(s) in core protein (II) appears to cause, in turn, a conformational change in the Rieske Fe-S protein.  相似文献   

2.
Purified and membrane-bound succinate dehydrogenase (SDH) from bovine heart mitochondria was inhibited by the histidine-modifying reagents ethoxyformic anhydride (EFA) and Rose Bengal in the presence of light. Succinate and competitive inhibitors protected against inhibition, and decreased the number of histidyl residues modified by EFA. The essential residue modified by EFA was not the essential thiol of SDH, but modification of the essential thiol abolished the protective effect of malonate against inhibition of SDH by EFA. The EFA inhibition was reversed by hydroxylamine nearly completely when the inhibition was less than or equal to 35%, and only partially when the inhibition was more extensive. The uv spectrum of EFA-modified SDH before and after hydroxylamine treatment suggested that extensive inhibition of SDH with EFA may result in ethoxyformylation at both imidazole nitrogens of histidyl residues. Such a modification is not reversed by hydroxylamine. Succinate dehydrogenases and fumarate reductases from several different sources have similar compositions, and the two enzymes from Escherichia coli have considerable homology in the amino acid composition of their respective flavoprotein and iron-sulfur protein subunits. In the former, there is a short stretch containing conserved histidine, cysteine, and arginine residues. These residues, if also conserved in the bovine enzyme, may be the essential active site residues suggested by this work (histidine) and previously (cysteine, arginine).  相似文献   

3.
The NADH:ubiquinone, but not the NADH:ferricyanide, reductase activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) is inhibited by incubation of the enzyme at pH 6.0 and 0 degree C with ethoxyformic anhydride (EFA), and the inhibition is partially reversed by subsequent incubation of EFA-treated complex I with hydroxylamine. These results and spectral changes of EFA-treated complex I in the u.v. region are consistent with modification of essential histidyl or tyrosyl residues between the primary NADH dehydrogenase and the site of ubiquinone reduction. Treatment of complex I with EFA in the presence of high concentrations of Seconal or Demerol did not protect against EFA inactivation, suggesting that the site of EFA modification may not be the same as the inhibiton sites of Seconal and Demerol. However, the presence of NADH during incubation of complex I with EFA greatly enhanced the inhibition rate, indicating that the reduced conformation of complex I is more susceptible to attack by EFA.  相似文献   

4.
The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  相似文献   

5.
N Carrillo  R H Vallejos 《Biochemistry》1983,22(25):5889-5897
Diethyl pyrocarbonate inhibited diaphorase activity of ferredoxin-NADP+ oxidoreductase with a second-order rate constant of 2 mM-1 X min-1 at pH 7.0 and 20 degrees C, showing a concomitant increase in absorbance at 242 nm due to formation of carbethoxyhistidyl derivatives. Activity could be restored by hydroxylamine, and the pH curve of inactivation indicated the involvement of a residue having a pKa of 6.8. Derivatization of tyrosyl residues was also evident, although with no effect on the diaphorase activity. Both NADP+ and NADPH protected the enzyme against inactivation, suggesting that the modification occurred at or near the nucleotide binding domain. The reductase lost all of its diaphorase activity after about two histidine residues had been blocked by the reagent. In differential-labeling experiments with NADP+ as protective agent, it was shown that diaphorase inactivation resulted from blocking of only one histidyl residue per mole of enzyme. Modified reductase did not bind pyridine nucleotides. Modification of the flavoprotein in the presence of NADP+, i.e., with full preservation of diaphorase activity, resulted in a significant impairment of cytochrome c reductase activity, with a second-order rate constant for inactivation of about 0.5 mM-1 X min-1. Reversal by hydroxylamine and spectroscopic data indicated that this second residue was also a histidine. Ferredoxin afforded only slight protection against this inhibition. Conversely, carbethoxylation of the enzyme did not affect complex formation with the ferrosulfoprotein. Redox titration of the modified reductase with NADPH and with reduced ferredoxin suggested that the second histidine might be located in the electron pathway between FAD and ferredoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In this study we reexamined the basis for the profound inhibitory effects of low concentrations of diethyl pyrocarbonate (DEP) on tubulin's ability to assemble into microtubules [cf. Lee, Y. C., Houston, L. I., & Himes, R. H. (1976) Biochem. Biophys. Res. Commun. 70, 50-56]. Assembly inhibition at low DEP concentrations can be resolved into two components: a component reversible with hydroxylamine (attributed to monoethoxyformylation of histidyl residues) that contributes approximately 40% of the inhibition and a hydroxylamine-resistant component (attributed to ethoxyformylation of non-histidyl residues) that contributes approximately 60% of the inhibition. Comparisons between the extent of assembly inhibition associated with each component and the degree of residue modification argue for the involvement of a small number of highly reactive residues in the inhibition process. To identify these residues, tubulin was reacted with limiting concentrations of [3H]DEP and subjected to tryptic digestion and HPLC analysis. Only one moderately reactive histidyl residue was detected. This residue (approximately 2-3-fold more reactive than the bulk histidyl residues) eluted in an apparently large, hydrophobic fragment. We failed to detect any non-histidyl residues that were exceptionally reactive to [3H]DEP. However, we did observe that the N-terminal methionyl residues in native protein were ethoxyformylated at rates comparable to that of the bulk histidyl residues. In denatured protein these methionyl residues were ethoxyformylated to a much larger extent (approximately 3-4-fold) than the bulk histidyl residues. We suggest that the N-terminal methionyl residues in tubulin are partly buried or are in a salt-bridge interaction in native protein and that ethoxyformylation of these residues disrupts tubulin structure and interferes with microtubule assembly.  相似文献   

7.
Radioimmunoassay and quantitative immunoblot analysis have been developed for quantitation of the iron-sulfur protein of cytochrome bc1 complex in order to compare its content in isolated cytochrome bc1 complex with that in electron transport particles. The result by radioimmunoassay indicated that the content of the iron-sulfur protein/mol of cytochrome b is higher by approximately 30%, on the average, in electron transport particles than in cytochrome bc1 complex. This observation was supported by the data of immunoblot analysis. Since approximately 1/3 of cytochrome b in electron transport particles is not attributed to cytochrome bc1 complex, but to succinate-ubiquinone oxidoreductase complex (Davis, K.A., Hatefi, Y., Poff, K. L., and Butler, W. L. (1973) Biochim. Biophys. Acta 325, 341-356), the ratio of the iron-sulfur protein detectable by radioimmunoassay in electron transport particles to that in cytochrome bc1 complex is calculated to be approximately 2 on the basis of the content of 2 mol of b-type heme/mol of the complex. Therefore, it appears that the mitochondrial inner membrane contains approximately two times as much of the immunoreactive iron-sulfur protein as what is expected from the stoichiometry of one iron-sulfur center and two b-type hemes for cytochrome bc1 complex. This finding affords an interesting aspect in the study of biogenesis of cytochrome bc1 complex.  相似文献   

8.
A procedure is described for isolation of active ubiquinol-cytochrome c oxidoreductase (bc1 complex) from potato tuber mitochondria using dodecyl maltoside extraction and ion exchange chromatography. The same procedure works well with mitochondria from red beet and sweet potato. The potato complex has at least 10 subunits resolvable by gel electrophoresis in the presence of dodecyl sulfate. The fifth subunit carries covalently bound heme. The two largest ("core") subunits either show heterogeneity or include a third subunit. The purified complex contains about 4 mumol of cytochrome c1, 8 mumol of cytochrome b, and 20 mumol of iron/g of protein. The complex is highly delipidated, with 1-6 mol of phospholipid and about 0.2 mol of ubiquinone/mol of cytochrome c1. Nonetheless it catalyzes electron transfer from a short chain ubiquinol analog to equine cytochrome c with a turnover number of 50-170 mol of cytochrome c reduced per mol of cytochrome c1 per s, as compared with approximately 220 in whole mitochondria. The enzymatic activity is stable for weeks at 4 degrees C in phosphate buffer and for months at -20 degrees C in 50% glycerol. The activity is inhibited by antimycin, myxothiazol, and funiculosin. The complex is more resistant to funiculosin and diuron than the beef heart enzyme. The optical difference spectra of the cytochromes were resolved by analysis of full-spectrum redox titrations. The alpha-band absorption maxima are 552 nm (cytochrome c1), 560 nm (cytochrome b-560), and 557.5 + 565.5 nm (cytochrome b-566, which has a split alpha-band). Extinction coefficients appropriate for the potato cytochromes are estimated. Despite the low lipid and ubiquinone content of the purified complex, the midpoint potentials of the cytochromes (257, 51, and -77 mV for cytochromes c1, b-560, and b-566, respectively) are not very different from values reported for whole mitochondria. EPR spectroscopy shows the presence of a Rieske-type iron sulfur center, and the absence of centers associated with succinate and NADH dehydrogenases. The complex shows characteristics associated with a Q-cycle mechanism of redox-driven proton translocation, including two pathways for reduction of b cytochromes by quinols and oxidant-induced reduction of b cytochromes in the presence of antimycin.  相似文献   

9.
Ethoxyformylation of sarcoplasmic reticulum vesicles is performed to study a possible role of histidine residues in the calcium translocation process. The influence of the chemical modification is evaluated on the Ca2+-dependent ATPase activity, and on the Ca2+ uptake parameters: VCa (initial rate of calcium uptake) and CCa (amount of cation accumulated at the steady state). The substitution of the amino acids is monitored by three different techniques: (a) by amino acid analysis of the ethoxyformylated material further submitted to modification by diazonium-1-H-tetrazole, or by sulfhydryl titration using 5-5'-dithiobis (2-nitrobenzoic acid); (b) by 14C labeling followed by the removing of labels after NH2OH or imidazole treatment at pH 7; (c) by spectrophotometric measurements at 230 nm. The ethoxyformylation reaction is not specific for histidine at pH 6.1 and 10 degrees. About 1 lysyl group/mol of ATPase is first modified. Then 1 (with a pseudo-first order rate constant of 240 (+/- 20) 10(-3) min-1) or 2 histidines are modified. No substitution of tyrosine or sulfhydryl groups can be detected under our experimental conditions. A decrease of the Ca2+-dependent ATPase activity correlated with the inhibition of both VCa and Cca corresponds to the chemical substitution of the histidine. No direct correlation between the decrease of the activities and the modification of the lysine can be found. After removing the ethoxyformyl group from the histidine, only the Ca2+-dependent ATPase activity is restored to its initial value. No protection is found when the reaction is performed in the presence of ATP or p-nitrophenylphosphate. These results can be explained if one assumes that the ethoxyformylation of the histidine residue(s) induces a conformational change modifying the affinity of the membrane for nucleotides.  相似文献   

10.
In cellular respiration, cytochrome c transfers electrons from cytochrome bc(1) complex (complex III) to cytochrome c oxidase by transiently binding to the membrane proteins. Here, we report the structure of isoform-1 cytochrome c bound to cytochrome bc(1) complex at 1.9 A resolution in reduced state. The dimer structure is asymmetric. Monovalent cytochrome c binding is correlated with conformational changes of the Rieske head domain and subunit QCR6p and with a higher number of interfacial water molecules bound to cytochrome c(1). Pronounced hydration and a "mobility mismatch" at the interface with disordered charged residues on the cytochrome c side are favorable for transient binding. Within the hydrophobic interface, a minimal core was identified by comparison with the novel structure of the complex with bound isoform-2 cytochrome c. Four core interactions encircle the heme cofactors surrounded by variable interactions. The core interface may be a feature to gain specificity for formation of the reactive complex.  相似文献   

11.
Sequence alignment of cytochrome b of the cytochrome bc1 complex from various sources reveals that bacterial cytochrome b contain an extra fragment at the C terminus. To study the role of this fragment in bacterial cytochrome bc1 complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with progressive deletion from this fragment (residues 421-445) were generated and characterized. The cytbDelta-(433-445) bc1 complex, in which 13 residues from the C-terminal end of this fragment are deleted, has electron transfer activity, subunit composition, and physical properties similar to those of the complement complex, indicating that this region of the extra fragment is not essential. In contrast, the electron transfer activity, binding of cytochrome b, ISP, and subunit IV to cytochrome c1, redox potentials of cytochromes b and c1 in the cytbDelta-(427-445), cytbDelta-(425-445), and cytbDelta-(421-445) mutant complexes, in which 19, 21, or all residues of this fragment are deleted, decrease progressively. EPR spectra of the [2Fe-2S] cluster and the cytochromes b in these three deletion mutant bc1 complexes are also altered; the extent of spectral alteration increases as this extra fragment is shortened. These results indicate that the first 12 residues (residues 421-432) from the N-terminal end of the C-terminal extra fragment of cytochrome b are essential for maintaining structural integrity of the bc1 complex.  相似文献   

12.
Possible involvement of polypeptides of b-c1 complex of beef-heart mitochondria in its redox and protonmotive activity has been investigated, by means of chemical modification of amino acid residues in the soluble as well as in the phospholipid-reconstituted b-c1 complex. Treatment of the enzyme with tetranitromethane (C(NO2)4) or with ethoxyformic anhydride (EFA), that modify reversibly tyrosyl and hystidyl residues respectively, resulted in a marked inhibition of electron transport from reduced quinols to cytochrome c. This was accompanied, in b-c1 reconstituted into phospholipid vesicles, by a parallel inhibition of respiratory-linked proton translocation; the H+/e- stoichiometry remained unchanged. Treatment of b-c1 complex with DCCD, that specifically modifies carboxylic groups of glutammic or aspartic residues caused a marked depression of proton translocation in b-c1 vesicles, under conditions where the rate of electron flow in the coupled state, was enhanced. As a consequence the H+/e- stoichiometry was lowered. SDS gel electrophoresis and [14C]DCCD-labelling of the polypeptides of the b-c1 complex showed a major binding of 14C-DCCD to the 8-kDa subunit of the complex and possible cross-linking, induced by DCCD treatment, of polypeptide(s) in the 8-kDa band and the 12-kDa band, with the Fe-s protein of the complex, with the appearance of a new polypeptide band with an apparent molecular mass of about 40 kDa. Involvement of polypeptides of low molecular mass, for which no functional role was so far described, and possibly of the Fe-S protein in the redox-linked proton translocation in b-c1 complex is suggested.  相似文献   

13.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

14.
The binding site of NADPH in NADPH-adrenodoxin reductase was examined using crystalline enzyme from bovine adrenocortical mitochondria by studies on the effects of photooxidation and chemical modifications of amino acid residues in the reductase. (1) Photoxication decreased the enzymatic activity of NADPH-adrenodoxin reductase. Photooxidation of the reductase was prevented by NADP+, adrenodoxin, or reduced glutathione, but not NAD+. Photoinactivation caused loss of a histidyl residue, but not of tyrosyl, tryptophanyl, cysteinyl, or methionyl residues of the reductase. It did not affect the circular dichroism spectrum of the reductase appreciably. (2) NADPH-adrenodoxin reductase activity was inhibited by diethyl pyrocarbonate and the inhibition was partially reversed by addition of hydroxylamine. The inhibition was prevented by NADP+, but not NAD+. (3) NADPH-adrenodoxin reductase activity was inhibited by 5,5'-dithiobis(2-nitrobenzoate) and the inhibition was reversed by reduced glutathione. It was also protected by NADP+, but not NAD+. The results indicate that a histidyl residue and a cysteinyl residue of NADPH-adrenodoxin reductase are essential for the binding of NADPH by the reductase.  相似文献   

15.
We have investigated electron transfer activities of respiratory chain complexes in platelet mitochondria of a patient with intermittent ataxia and lactic acidosis who was previously reported to be deficient in the E1 (decarboxylase) component of the pyruvate dehydrogenase complex. Electron transfer from succinate to cytochrome c was normal, but the mitochondria exhibited moderately decreased (63% of control) quinol: cytochrome-c oxidoreductase activity, suggesting a defect in complex III. Consistent with some perturbation in complex III, electron flux through complex III was resistant to inhibition by myxothiazol compared to normal controls. In contrast, titration with antimycin revealed a less abnormal pattern of inhibition. The extreme specificity of myxothiazol binding at or near the quinol oxidase domain of mitochondrial cytochrome b, i.e., b-566, suggests a defect in this region of complex III which may perturb the kinetics or thermodynamics of quinol oxidation in the complex. These data suggest that the patient's illness results from a mutation in the quinol oxidase domain of mitochondrial cytochrome b (b-566).  相似文献   

16.
Mutating three conserved alanine residues in the tether region of the iron-sulfur protein of the yeast cytochrome bc(1) complex resulted in 22-56% decreases in enzymatic activity [Obungu et al. (2000) Biochim. Biophys. Acta 1457, 36-44]. The activity of the cytochrome bc(1) complex isolated from A86L was decreased 60% compared to the wild-type without loss of heme or protein and without changes in the 2Fe2S cluster or proton-pumping ability. The activity of the bc(1) complex from mutant A92R was identical to the wild-type, while loss of both heme and activity was observed in the bc(1) complex isolated from mutant A90I. Computer simulations indicated that neither mutation A86L nor mutation A92R affects the alpha-helical backbone in the tether region; however, the side chain of the leucine substituted for Ala-86 interacts with the side chain of Leu-89. The Arrhenius plot for mutant A86L was apparently biphasic with a transition observed at 17-19 degrees C and an activation energy of 279.9 kJ/mol below 17 degrees C and 125.1 kJ/mol above 17 degrees C. The initial rate of cytochrome c(1) reduction was lowered 33% in mutant A86L; however, the initial rate of cytochrome b reduction was unaffected, suggesting that movement of the tether region of the iron-sulfur protein is necessary for maximum rates of enzymatic activity. Substituting a leucine for Ala-86 impedes the unwinding of the alpha-helix and hence movement of the tether.  相似文献   

17.
We have studied the effects of dibromothymoquinone (DBMIB) in various redox activities of the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations higher than 50 mol/mol of cytochrome c1 the inhibitor produces a bypass of electron transfer on the substrate side of the bc1 complex, because of its autooxidation capability. This induces an artifactual overestimation of the real inhibition titer of the redox activity of this enzyme, which has been found to be 3-6 mol/mol of cytochrome c1 by following the ubiquinol-cytochrome c reductase activity. This action is reversed by addition of excess of sulphydryl compounds like cysteine.  相似文献   

18.
Crystal structures of the cytochrome bc1 complex indicate that the catalytic domain of the Rieske iron-sulfur protein, which carries the [2Fe-2S] cluster, is connected to a transmembrane anchor by a flexible linker region. This flexible linker allows the catalytic domain to move between two positions, proximal to cytochrome b and cytochrome c1. Addition of an alanine residue to the flexible linker region of the Rieske protein lowers the ubiquinol-cytochrome c reductase activity of the mitochondrial membranes by one half and causes the apparent Km for ubiquinol to decrease from 9.3 to 2.6 microM. Addition of two alanine residues lowers the activity by 90% and the apparent Km decreases to 1.9 microM. Deletion of an alanine residue lowers the activity by approximately 40% and the apparent Km decreases to 5.0 microM. Addition or deletion of an alanine residue also causes a pronounced decrease in efficacy of inhibition of ubiquinol-cytochrome c reductase activity by stigmatellin, which binds analogous to reaction intermediates of ubiquinol oxidation. These results indicate that the length of the flexible linker region is critical for interaction of ubiquinol with the bc1 complex, consistent with electron transfer mechanisms in which ubiquinol must simultaneously interact with the iron-sulfur protein and cytochrome b.  相似文献   

19.
Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing 相似文献   

20.
Diethyl pyrocarbonate (ethoxyformic anhydride) was used to modify histidyl residues in prothrombin. Diethyl pyrocarbonate inactivated the potential fibrinogen-clotting activity of prothrombin with a second-order rate constant of 70 M-1 min-1 at pH 6.0 and 25 degrees C. The difference spectrum of the modified protein had a maximum absorption at 240 nm which is characteristic of N-carbethoxyhistidine. The pH dependence for inactivation suggested the participation of a residue with a pKa of 6.2. Addition of hydroxylamine to ethoxyformylated prothrombin reversed the loss of fibrinogen-clotting activity. No structural differences were detected between the native and modified proteins using fluorescence emission and high-performance size-exclusion chromatography. The tyrosine and tryptophan content was not altered, but approximately 1-2 amino groups were modified. Statistical analysis of residual enzyme activity and extent of modification indicates that among 7 histidyl residues modified per molecule, there is 1 essential histidine (not in the active site) involved in the potential fibrinogen-clotting activity of prothrombin. To further examine its properties, the modified prothrombin was activated to thrombin using Echis carinatus venom protease. There was no difference in the catalytic activity of thrombin obtained from either native or ethoxyformylated prothrombin, as measured by H-D-Phe-pipecolyl-Arg-p-nitroanilide (D-Phe-Pip-Arg-NA) hydrolysis. However, thrombin produced from the modified protein showed a loss of fibrinogen-clotting activity but had a comparable apparent Ki value (about 20 microM) to thrombin from native prothrombin when fibrinogen was used as a competitive inhibitor during D-Phe-Pip-Arg-NA hydrolysis. The similarity in Ki values indicated that thrombin derived from diethyl pyrocarbonate-modified prothrombin does not have an altered fibrinogen-binding site. Although the histidyl residue involved during inactivation has not been identified, the results suggest that a histidyl residue in the thrombin portion of prothrombin is essential for interaction with fibrinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号