首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seed banks in the soils of seven mature beech forests in southern Sweden were examined using the seedling-emergence method. Seedling emergence in the field was also studied. In the studied forests, covering a wide range of vegetation and soil types, between 1020 and 4500 germinating seeds m−2 were found in the seed bank. Seed abundance showed no apparent relationship with the type of soil or vegetation at the sites, but the highest number of species in the seed bank was found on the mull sites. The species diversity of germinative seeds increased strongly with increasing soil fertility.
Only a minor part (10–35%) of the species in the germinable part of the seed bank were represented in the vegetation. Soil samples from the oligotrophic sites mainly contained graminoids, notably Carex spp., while herbs dominated the seed banks of the rich mull sites. Seeds of e.g. Stellaria nemorum, Oxalis acetosella, Moehringia trinervia, Viola rivinianalreichenbachiana, Melica uniflora , and Milium effusum were especially abundant in the mull soils. Woody species were infrequent on all sites, and no representatives of the early spring flora were noted in the germination tests.
In the mor and moder soils most seeds were recovered from the mineral soil, and they were believed to originate from early stages in the succession of the forest. Several sites had comparatively large seed banks of species that typically occur in disturbed forests, e.g. Juncus effusus and Rubus idaeus , but very few germinating seeds belonged to species restricted to non-forest habitats. Emerging seedlings in the field were only observed on the mull and moder sites. With few exceptions they belonged to species, which were common both in the seed banks and in the vegetation.  相似文献   

2.
H. Staaf 《Oecologia》1987,72(1):58-64
Summary Leaf litter decomposition, levels of accumulated litter as well as the abundance and biomass of earthworms were measured in three mature beech forests in southern Sweden: one mor site, one poor mull site, and one rich mull site. The disappearance rate of beech litter, measured with litter bags, increased with increasing soil fertility. On the rich mull site, the disappearance rate was much higher than in the two other forests, due to the combined effects of higher earthworm activity, more favouable soil moisture conditions, and higher litter quality. Incubating the litter in finely meshed bags (1-mm mesh) to exclude macrofauna had a great effect on litter mass loss in the rich mull site, but it had only a minor effect in the other sites. Simultaneous incubations of local and transplanted leaf litter on the three study sites showed that the substrate quality of the litter increased in the order: mor site — poor mull site — rich mull site. Lignin, N, and P concentrations of the leaf litter failed to explain the observed differences in decomposition rates, and acid/base properties are suggested to be more important. Earthworm numbers per m2 were 2.5 (1 species) in the mor, 40 (6 species) in the poor mull and 220 (9 species) in the rich mull forest. Soil chemical conditions, notably pH, were suggested as the main factors determining the inter-site differences in abundance and species composition of earthworms. The role of litter decomposition and earthworm activity in the accumulation of organic matter in the forest floor in different types of beech woodlands are discussed.  相似文献   

3.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

4.
Markus Hauck  Toby Spribille   《Flora》2005,200(6):547-562
The relevance of chemical site factors for the abundance of epiphytic lichens was studied in Picea engelmannii-Abies lasiocarpa forests of the Salish Mountains, northwestern Montana, USA. The Salish Mountains are an area with relatively low atmospheric pollutant load and low precipitation. Canonical correspondence analysis (CCA) suggests that cover of several lichen species was limited by high Mn concentrations of bark or by high ratios of Mn to Ca, Mg and Fe. Mn in the bark is known primarily to derive from the soil. An effect of Mn concentration or Mn/Ca and Mn/Mg ratios was not found on A. lasiocarpa. This suggests that A. lasiocarpa deposits Mn in the bark in a physiologically inactive form as already known from A. balsamea. Precipitation chemistry was apparently less relevant for epiphytic lichen distribution in the Salish Mountains, as no correlations between element concentrations in stemflow and cover values were found and as amounts of stemflow were small. However, precipitation in the study year was less than average. The lacking significance of precipitation chemistry is probably the cause why epiphytic lichen vegetation differed less between living and dead trees in the Salish Mountains than in highly polluted coniferous forests studied by our group in Germany; in Germany, the difference between living and dead trees was attributed to reduced interception of pollutants from the atmosphere by trees with reduced crown surface. The result of the present study that small-scale variation of epiphytic lichen abundance is only partly explainable by chemical parameters gives rise to the assumption that microclimate (e.g., moisture), which has not been systematically explored, could be an important site factor for epiphytic lichens in the Salish Mountains. Furthermore, tree age was identified by CCA as a relevant site factor for lichens on P. engelmannii.  相似文献   

5.
There is growing interest in understanding how declining soil fertility in the prolonged absence of major disturbance drives ecological processes, or ‘ecosystem retrogression’. However, there are few well characterized study systems for exploring this phenomenon in the tropics, despite tropics occupying over 40% of the Earth's terrestrial surface. We studied two types of montane rain forest in the Blue Mountains of Jamaica that represent distinct stages in ecosystem development, i.e. an earlier stage with shallow organic matter and a late stage with deep organic matter (hereafter ‘mull’ and ‘mor’ stages). We characterized responses of soil fertility and plant, soil microbial and nematode communities to the transition from mull to mor and whether these responses were coupled. For soil abiotic properties, we found this transition led to lower amounts of both nitrogen (N) and phosphorus (P) and an enhanced N to P ratio. This led to shorter‐statured and less diverse forest, and convergence of tree species composition among plots. At the whole community (but not individual species) level foliar and litter N and P diminished from mull to mor, while foliar N to P and resorption efficiency of P relative to N increased, indicating increasing P relative to N limitation. We also found impairment of soil microbes (but not nematodes) and an increasing role of fungi relative to bacteria during the transition. Our results show that retrogression phenomena involving increasing nutrient (notably P) limitation can be important drivers in tropical systems, and are likely to involve aboveground–belowground feedbacks whereby plants produce litter of diminishing quality, impairing soil microbial processes and thus reducing the supply of nutrients from the soil for plant growth. Such feedbacks between plants and the soil, mediated by plant litter and organic matter quality, may serve as major though often overlooked drivers of long term environmental change.  相似文献   

6.
木兰属五种珍贵、稀有植物的生态特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过对黄山木兰、天目木兰、宝华玉兰、小花木兰和凹叶厚朴五种珍贵、稀有木兰属植物的野外调查、引种栽培、幼树生长特性的观测以及植物体元素组成和土壤性质的分析,初步总结了它们的地理分布、幼树生长规律、气候和土壤适应性及其生长过程中矿质元素的吸收和循环等。为保护和发展这几种珍贵、稀有植物提供了科学依据。  相似文献   

7.
The nutrient cycling and foliar status for the elements Ca, Mg, K, N, P, S, Fe, Mn, Zn and Cu were investigated in an urban forest of Aleppo pine (Pinus halepensis) in 2004 in Athens, Greece in order to draw conclusions on the productivity status and health of the ecosystem. The fluxes of bulk and throughfall deposition were characterized by the high amounts of Ca, organic N and sulfate S. The magnitude of the sulfate S fluxes indicated a polluted atmosphere. The nutrient enrichment in throughfall was appreciable for ammonium N, P and Mn. The mineral soil formed the largest pool for all the elements followed by the forest floor, trunk wood and trunk bark. The understory vegetation consisting of annual plants proved important for storing N, P and K. Compared to current year needles of Aleppo pine in remote forests of Spain, the needles of the Aleppo pine trees in Athens had significantly higher concentrations of Ca, N, P and Cu and significantly lower concentrations of Mg and Zn. The soil had a high concentration of calcium carbonate and accordingly high pH values. When all inputs to the forest floor were taken into account, the mean residence time of nutrients in the forest floor followed the order Fe > Mn > Cu > Ca > Mg > P > Zn > N > K > S.  相似文献   

8.
宁镇山区不同森林土壤生物学特性的研究   总被引:24,自引:6,他引:18  
对宁镇山区不同森林土壤微生物、土壤酶活性,营养元素的变化及凋落物的分解等生物学特性进行了探讨,结果表明,土壤微生物数量和6种土壤酶的生化活性在不同的季节的不同的林型土壤中均呈现出一定的变化规律,土壤中营养元素的含量随森林的生长周期而发生规律性的变化,并与土壤中微生物数量和土壤酶活性有显著的相关性,不同林地凋落物分解速率与其营养元素归还速率存在一定的时空差异,对次生栎林、毛竹林和杉木林土壤各生物学特性的比较表明,栎林土壤营养元素的含量最丰富,并具有较强的自肥调控能力,因此种植针阔混交林有利于防止针叶纯林的地力衰退现象。  相似文献   

9.
Soil macro-invertebrates and rate of litter disappearance were studied in a ridge plot with moder (mor) humus and a bottom plot with mull humus on a slope in a temperate mixed deciduous forest in Kyoto, Japan (J). The results were compared with those from two German beech forests (G) representative of European deciduous forest mor and mull. Between-plot differences in biomass of total saprophagous animals was much smaller in J than in G, which is dominated by earthworms. Susceptibility to soil acidity and zoogeographical distribution of earthworms were suggested to be related to this situation. Biomass of soil macro-invertebrates and litter turnover rate were compared among J, G and three types of tropical rainforests in Malaysia (M) in relation to climatic conditions. Taking into account among-site differences in temperature and moisture, which affect microbial activity and in biomass of saprophagous macro-invertebrates especially earthworms, the following order of importance of soil macro-invertebrates in determining the rate of litter disappearance was suggested: G>J>M. Based on the comparison of biomass of earthworms among European deciduous forests, Japanese deciduous forests and tropical rainforests, as well as on the presence or absence of anecic earthworms in these forests, it was suggested that this ranking could be generalized to European deciduous forests > Japanese deciduous forests > tropical rainforests. It was pointed out that this order was the opposite of the gradient in evapotranspiration rate existing among these regions.  相似文献   

10.
Volker Nicolai 《Oecologia》1988,75(4):575-579
Summary Factors influencing decomposition in European forests growing on different soils were studied in stands dominated by the European beechFagus sylvatica L. Phenolic contents of freshly fallen leaves ofF. sylvatica growing on nutrient-poor soils (acid sandy soil) were higher than those of similar leaves on nutrient-rich soils (calcareous mull soil). Analysis of fallen leaves of different ages showed rapid decay of phenolics during the first winter on the ground. After 1 year the phenolic content of leaves ofF. sylvatica growing on nutrient-poor soils was still twice as high as in similar leaves on nutrient-rich soils. Field and laboratory experiments showed that a major decomposer (Oniscus asellus, Isopoda) preferred leaves from trees on nutrient-rich soils. Mineral contents of leaves ofF. sylvatica growing on different soils differed: on rich soils leaves had higher contents of Ca, Mg, Na, and K. These elements are important nutrients for decomposers. The distribution of major decomposers reflects the mineral content of their diet, which in turn reflects soil type. Different rates of leaf turnover and nutrient turnover in different forest ecosystems (even when the same tree species is dominant) are due to the decomposing system, which is influenced by the phenolic and mineral contents of the leaves.  相似文献   

11.
Three humus forms that are widespread in the Inner Alps, a dysmull below Pinus sylvestris, an oligomull below Abies alba and a mor below Pinus cembra, were studied by following mineral nitrogen production and uptake and by a characterization of the pedofauna. Due to the production and uptake of nitrogen, mainly as nitrates and also due to the dominance of Lumbricids versus Arthropods, the oligomull was the sole humus form that functioned as a mull. Nevertheless relatively weak mineral nitrogen production and the dominance of endogeic soil-dwelling earthworms versus anecic earthworms demonstrated the moderate activity of this mull, which is representative of humus forms of old growth forests and cold climates. There was a discrepancy between the very low biological activity of the dysmull and its status of mull, while an observed bifunctioning between the different layers of this humus also differentiated it from the mor.  相似文献   

12.
Environment and seedling community under isolated trees in pastures are different from those in the open pasture. The effect of the pasture trees on the soil nutrients and on the seedling growth were investigated. Seven isolated trees and eight plots were selected in two pastures of 12-yr and 32-yr old derived from a lowland rain forest with nutrient-rich soil at Los Tuxtlas, Mexico. The soil concentrations of total N, P Bray, K+, Na+, Ca2+ and Mg2+, plus others physical and chemical characteristics, were compared between the pasture trees and the open-pasture. An experiment was done to test the hypothesis that soil from under the pasture trees was better for seedling growth than soil from the open pasture. Seedlings of two native tree species and two domesticated species were grown in soil from the two different sites in a shade-house. The dry weight of the shoot and root/shoot ratio were compared. Only total N, P and Na+ differed slightly in concentrations between the sites, but did not promote more seedling biomass. It seems that the soil at this location is sufficiently nutrient-rich even in the open pastures and over-ride any effect of the pasture trees on nutrient availability.  相似文献   

13.
树干径流对梭梭"肥岛"和"盐岛"效应的作用机制   总被引:4,自引:0,他引:4  
为探明荒漠灌木个体周围土壤养分和盐分的空间分布及其成因,以荒漠灌木梭梭(Haloxylon ammodendron Bge.)为研究对象,对其周围土壤pH值,电导率,有机碳,全氮和有效磷的空间异质性以及树干径流的化学性质进行了研究。结果表明:树干周围出现显著的"肥岛"效应,且土壤有机碳,全氮和有效磷的"肥岛"作用范围发生在距主根大约20—40 cm以内。土壤pH值和电导率在主根周围25 cm以内的值却显著低于外围,而在离主根25 cm处出现了"盐岛",即在梭梭主根中心形成了一种高养分、低盐和低pH值的环境。树干径流和自然降雨化学性质的对比研究表明:除pH值和CO23-外,树干径流中其他化学离子的含量均显著高于自然降雨中的含量,说明这种高养分、低盐分的环境是由树干径流引起的,也就是树干径流带给土壤养分的同时将盐分带走。  相似文献   

14.
Rapid leaf decay and nutrient release in a chinese tallow forest   总被引:6,自引:0,他引:6  
Summary The Chinese tallow tree, Sapium sebiferum, was introduced to the Texas Gulf Coast in the early 1900's and has spread into coastal prairie habitats. Since coastal prairie contains few deciduous trees, we studied leaf fall dynamics, rate of decomposition, and the quantity and rate of nutrient input from decomposing tallow leaves. Among-year leaf fall averaged 382.6 g·m-2·yr-1, similar to other south temperat deciduous forests and about as predicted by Meentemeyer et al.'s (1982) AE-lignin model. Decay of tallow leaves (k=-4.33) was much more rapid than native black willow (k=-0.35) and than other temperate deciduous trees (k=-0.77). The ratio of lignin to initial nitrogen concentration, highly correlated with rate of decomposition for hardwood trees, was low for Chinese tallow and may contribute to rapid leaf decay. Taking AE and lignin content into account, Meentemeyer's (1984) model predicted k=-1.39 for Chinese tallow and k=-0.88 for black willow. Decay of tallow was much faster but decay of willow was slower than predicted, suggesting that decay on the coastal prairie may be controlled by factors other than lignin content and climate. N, P, and K characteristically accumulate as leaves decay. However, these elements did not accumulate as tallow leaves decayed, possibly because high densities of Armadillidium vulgare, a detritivore, reduced immobilization of elements by microbes. This would result in increased turnover of these elements. Accumulation of Al, Fe, Zn, and S in decaying tallow litter may be related to flood-drain cycles on coastel prairie clay soils. Ca, N, K, Mg, and S were added to forest soil in greatest amounts from decaying tallow leaves. Concentrations of P, K, NO3–N, Zn, Mn, and Fe were significantly higher and Mg and Na were significantly lower in forest than in prairie soil, raising the possibility that Chinese tallow trees altered the distribution of nutrients in the soil profile. We conclude that the Chinese tallow tree may enhance productivity in ecosystems to which it has been introduced by addition of nutrients from rapid decay of leaves.  相似文献   

15.
Summary The distribution of mull and mor, in an area which is believed to have borne forest for a number of centuries at least, led to investigations into the reasons for their development.Although the term forest-floor type has been substituted for humus type, mull and mor are used in the Müller-Hesselman sense.There appeared to be no obvious relationship between the distribution of the various forest-floor subtypes and the results of chemical analyses and pH determinations on soil samples.Where free CaCO3 occurred in the A1-horizon, a mull forest floor had developed even on coarse sand and the associated herb flora differed only slightly from that occurring on very acid mull. As the manner in which lime influences most soil processes is still unknown, the areas in which free CaCO3 occurs were excluded from the investigations.Assessments of various other soil characteristics were made and the frequency of association of the various categories of these characteristics ascertained.It is concluded that the colour of the upper part of the A1-horizon and its degree of leaching are related to its texture, and that the forest-floor subtypes are more closely related to soil texture than to soil colour or degree of leaching.  相似文献   

16.
鼎湖山酸沉降背景下主要森林类型水化学特征初步研究   总被引:28,自引:0,他引:28  
雨水的水质在通过森林后会发生变化.如果雨水是酸性的,这种变化会更加明显.通过一年多时间在鼎湖山主要森林类型采样分析发现,鼎湖山大气降水pH值低,酸雨频率高;阔叶林穿透雨pH值比大气降水高,树干径流和地表水pH值比大气降水低,土壤自然酸化非常严重;混交林穿透雨和地表水酸度比大气降水低,树干径流酸度则大于大气降水;针叶林穿透雨和树干径流都有进一步酸化趋势,但地表水pH值比大气降水高.3种林型比较,阔叶林林冠缓冲能力最强,针叶林土壤缓冲能力最大.3种林型,林内降水和地表水养分N、P、K、Ca、Mg和Na含量除N外都明显高于大气降水.各林型树干径流对养分富集能力强于穿透水,养分在大气降水中的浓度低于在地表水中的浓度.针叶林林内降水比混交林和阔叶林养分含量高,但地表水中养分浓度比后两者低.从地表水的养分浓度看,阔叶林和混交林养分亏损更为严重.  相似文献   

17.
林火干扰对北方针叶林林下植被的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
林下植被在北方针叶林植被群落中的物种多样性最高, 且具有较高的生物量周转率和地上部分净初级生产力, 对北方针叶林生态系统功能起着重要作用。火干扰是决定北方针叶林林下植被结构与功能的一个重要景观过程。该文综述了火干扰是如何通过与地形、火前林冠组成的交互作用而影响环境资源和林下植被的。最近的研究表明: 林下植被能够影响火后树木更新苗的定植、重建速率及森林演替轨迹; 林下植被还会通过影响元素的生物地球化学过程(凋落物降解和养分循环)影响林下环境资源的数量与异质性。因此, 研究火后初期北方针叶林林下植被的动态变化, 对于物种多样性保护和森林管理具有重要意义。  相似文献   

18.
Acid sulfate soils, peat soils, sandy podzolic, and saline soils are widely distributed in Peninsular Thailand. Native plants adapted to such problem soils have grown well, and showed no symptom of mineral deficiency or toxicity. Dominant plants growing in low pH soils (acid sulfate and peat) were Melastoma marabathricum and Melaleuca cajuputi. Since M. marabathricum accumulated a huge amount of aluminum (Al) in leaves, especially in new growing leaves, it can be designated an Al accumulator plant. While M. cajuputi did not accumulate Al in shoot, it can be designated an Al excluder plant. Both plant species adapted well to low pH soils, though a different strategy was used for Al. On the other hand, in acid sulfate and peat soils, M. cajuputi, Panicum repens, Cyperus haspan, and Ischaemum aristatum accumulated large amounts of Na in the leaves (or shoots), even in soil with low exchangeable Na concentration. Thus, when growing in the presence of high Al and Na concentration in soils, plant species have developed two opposite strategies: (1) Al or Na accumulation in the leaf and (2) Al or Na exclusion from the leaf. Al concentration in leaves had a negative relationship with the other mineral nutrients except for N and Mn, and Na concentration in leaves also had a negative relationship with P, Zn, Mn, Cu, and Al. Consequently, Al and Na accumulator plants are characterized by their exclusion of other minerals from their leaves.  相似文献   

19.

Background and aims

The aim of this study is to enhance our knowledge of nitrogen (N) cycling and N acquisition in tropical montane forests through analysis of stable N isotopes (δ15N).

Methods

Leaves from eight common tree species, leaf litter, soils from three depths and roots were sampled from two contrasting montane forest types in Jamaica (mull ridge and mor ridge) and were analysed for δ15N.

Results

All foliar δ15N values were negative and varied among the tree species but were significantly more negative in the mor ridge forest (by about 2 ‰). δ15N of soils and roots were also more negative in mor ridge forests by about 3 ‰. Foliar δ15N values were closer to that of soil ammonium than soil nitrate suggesting that trees in these forests may have a preference for ammonium; this may explain the high losses of nitrate from similar tropical montane forests. There was no correlation between the rankings of foliar δ15N in the two forest types suggesting a changing uptake ratio of different N forms between forest types.

Conclusions

These results indicate that N is found at low concentrations in this ecosystem and that there is a tighter N cycle in the mor ridge forest, confirmed by reduced nitrogen availability and lower rates of nitrification. Overall, soil or root δ15N values are more useful in assessing ecosystem N cycling patterns as different tree species showed differences in foliar δ15N between the two forest types.  相似文献   

20.
天然枫桦红松林凋落量动态及养分归还量   总被引:1,自引:0,他引:1       下载免费PDF全文
三年定位研究表明小兴安岭天然枫桦红松林年均凋落量有5.8t/ha(干重)。凋落量的季节变化格局是随着气候变冷有一明显秋季凋落高峰期(9—10月)。凋落物每年养分的归还量:Ca、N、K、Mg、P,相应为67.0、56.9、14.8、9.5、和6.6kg/ha,总计155.0kg/ha。据测定阔叶树落叶养分含量明显高于所有针叶的含量。尽管阔叶树的年凋落量仅占该混交林的年总凋落量的三分之一,阔叶树落叶仍有相当高的养分比例(43.4%)归还土壤。因此,红松林分的经营管理中,保留适当比重的阔叶树有利于土壤改良和促进林分生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号