首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Journal of Structural and Functional Genomics - The major transitions in human evolution from prokaryotes toeukaryotes, from protozoans to metazoans, from the first animals tobilaterians and...  相似文献   

4.
Summary Evolution and divergence among, species within the genusLathyrus have involved an approximately fivefold increase in the amounts of nuclear DNA. Most species inLathyrus are diploids with the same chromosome number, 2n=14. Significant changes in the amounts of repetitive sequences have accounted for much of the evolutionary DNA variation between species. Seven diploidLathyrus species with a twofold variation in nuclear DNA amounts between them were investigated. Using higher derivative analysis of the thermal denaturation profiles of the reassociated repetitive DNA, the reiteration frequency and divergence of repetitive families were compared. Much variation in the reiteration frequency was observed within and between species. In species with larger 2C DNA amounts repetitive families had on average greater amounts of DNA. Despite the massive differences in DNA amounts, six species were consistently similar in the number of repetitive families in their genomes, and they showed a similar pattern in base sequence divergence. In terms of base sequence relationships the repetitive families appeared to be heterogeneous. The evolutionary significance is discussed.  相似文献   

5.
6.
Summary The L1 family of long interspersed repetitive DNA in the rabbit genome (L1Oc) has been studied by determining the sequence of the five L1 repeats in the rabbit -like globin gene cluster and by hybridization analysis of other L1 repeats in the genome. L1Oc repeats have a common 3 end that terminates in a poly A addition signal and an A-rich tract, but individual repeats have different 5 ends, indicating a polar truncation from the 5 end during their synthesis or propagation. As a result of the polar truncations, the 5 end of L1Oc is present in about 11,000 copies per haploid genome, whereas the 3 end is present in at least 66,000 copies per haploid genome. One type of L1Oc repeat has internal direct repeats of 78 bp in the 3 untranslated region, whereas other L1Oc repeats have only one copy of this sequence. The longest repeat sequenced, L1Oc5, is 6.5 kb long, and genomic blot-hybridization data using probes from the 5 end of L1Oc5 indicate that a full length L1Oc repeat is about 7.5 kb long, extending about 1 kb 5 to the sequenced region. The L1Oc5 sequence has long open reading frames (ORFs) that correspond to ORF-1 and ORF-2 described in the mouse L1 sequence. In contrast to the overlapping reading frames seen for mouse L1, ORF-1 and ORF-2 are in the same reading frame in rabbit and human L1s, resulting in a discistronic structure. The region between the likely stop codon for ORF-1 and the proposed start codon for ORF-2 is not conserved in interspecies comparisons, which is further evidence that this short region does not encode part of a protein. ORF-1 appears to be a hybrid of sequences, of which the 3 half is unique to and conserved in mammalian L1 repeats. The 5 half of ORF-1 is not conserved between mammalian L1 repeats, but this segment of L1Oc is related significantly to type II cytoskeletal keratin.  相似文献   

7.
Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae)   总被引:2,自引:0,他引:2  
Four highly differentiated chloroplast DNA (cpDNA) lineages were identified in the forest tree species Eucalyptus globulus Labill. (Myrtaceae) in Australia using restriction site polymorphisms from Southern analysis. The cpDNA variation did not conform with ssp. boundaries, yet there was a strong geographical pattern to the distribution of the lineages. One lineage (C) was geographically central and widespread, whereas the other three lineages were found in peripheral populations: Western (W), Northern (N) and Southern (S). Thirteen haplotypes were detected in E. globulus , seven of which belonged to clade C. At least three of the cpDNA lineages (C, N and S) were shared extensively with other species. On the east coast of the island of Tasmania, there was a major north–south difference in cpDNA in the virtually continuous distribution of E. globulus . Northern populations harboured haplotypes from clade C while southeastern populations harboured a single haplotype from clade S. This difference was also reflected in several co-occurring endemic species. It is argued that the extensive cpDNA differentiation within E. globulus is likely to originate from interspecific hybridization and 'chloroplast capture' from different species in different parts of its range. Superficially, this hybridization is not evident in taxonomic traits; however, large-scale common garden experiments have revealed a steep cline in quantitative genetic variation that coincides with the haplotype transition in Tasmania. Our cpDNA results provide the strongest evidence to date that hybridization has had a widespread impact on a eucalypt species and indicate that reticulate evolution may be occurring on an unappreciated scale in Eucalyptus .  相似文献   

8.
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.  相似文献   

9.
 The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord, floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus. In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa. Received: 20 July 1998 / Accepted: 23 September 1998  相似文献   

10.
The Dactylorhiza incarnata/maculata complex (Orchidaceae) was used as a model system to understand genetic differentiation processes in a naturally occurring polyploid complex with much of ongoing diversification and wide distribution in recently glaciated areas in northern Europe. Data were obtained for 12 hypervariable regions in the plastid DNA genome. A total of 166 haplotypes were found in a sample of 1099 plants. Allopolyploid taxa have inherited their plastid genomes from D. maculata s.l. Overall haplotype diversity of the combined group of allopolyploid taxa was comparable to that of maternal D. maculata s.l., but populations of allopolyploids were also more strongly differentiated from each other and contained lower numbers of haplotypes than populations of D. maculata s.l. In addition to haplotypes found in extant D. maculata s.l., the allopolyploids also contained several distinct and widespread haplotypes that were not found in any of the parental lineages. Some of these haplotypes were shared between widespread allopolyploids. Divergent allopolyploids with small distributions did not seem to originate from local polyploidization events, but rather as segregates of already existing allopolyploids. Genetic diversification of allopolyploid Dactylorhiza is the result of repeated polyploid formation, secondary hybridization and introgression between already existing polyploids and extant representatives of parental lineages, hybridization between independently derived polyploid lineages, and phyletic diversification in the group of allopolyploids. Although some polyploid taxa must have evolved after the last glaciation, genetic material from the parental lineages has been transferred continuously for longer periods of time. This combination of processes may explain the taxonomic complexity encountered in Dactylorhiza and other polyploid complexes distributed in previously glaciated parts of Europe.  相似文献   

11.
Specific gene sequences can be detected by DNA hybridization to individual Drosophila squashed on cellulose or nylon filters. This “squash-blot” method permits the rapid survey of DNA polymorphism in large Drosophila population samples. It could also be useful for studying chromosome aberrations, departure from diploidy, and detection of pathogenic agents in vector insects.  相似文献   

12.
13.
14.
15.
The genomic organization and chromosomal distributions of two abundant tandemly repeated DNA sequences, dpTa1 and pSc119.2, were examined in six wild Hordeum taxa, representing the four basic genomes of the genus, by Southern and fluorescence in situ hybridization. The dpTa1 probe hybridized to between 30 and 60 sites on the chromosomes of all five diploid species studied, but hybridization patterns differed among the species. Hybridization of the pSc119.2 sequence to the chromosomes and Southern blots of digested DNA detected signals in Hordeum bulbosum, Hordeum chilense, Hordeum marinum and Hordeum murinum 4x, but not in Hordeum murinum 2x and Hordeum vulgare ssp. spontaneum. A maximum of one pSc119.2 signal was observed in the terminal or subterminal region of each chromosome arm in the species carrying this sequence. The species carrying the same I-genome differed in the presence (Hordeum bulbosum) or absence (Hordeum spontaneum) of pSc119.2. The presence of pSc119.2 in the tetraploid cytotype of Hordeum murinum, but its absence in the diploid cytotype, suggests that the tetraploid is not likely to be a simple autotetraploid of the diploid. Data about the inter- and intra-specific variation of the two independent repetitive DNA sequences give information about both the interrelationships of the species and the evolution of the repetitive sequences. Received: 17 March 1999 / Accepted: 16 June 1999  相似文献   

16.
The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.  相似文献   

17.
Molecular phylogenetic analyses using mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences representing all 15 species and the majority of subspecies or races of theOhomopterus ground beetles from all over the Japanese archipelago have uncovered a remarkable evolutionary history. Clustering of the species in the molecular phylogenetic tree is linked to their geographic distribution and does not correlate with morphological characters. Taxonomically the same species or the members belonging to the same species-group fall out in more than two different places on the ND5 tree. Evidence has been presented against a possible participation of ancestral polymorphism and random lineage sorting or of hybrid individuals for the observed distribution of mitochondrial DNA haplotypes. The most plausible explanation of our results is that parallel evolution took place in different lineages. Most notably,O. dehaanii, O. yaconinus, andO. japonicus in a lineage reveal almost identical morphology with those of the same species (or subspecies) but belonging to the phylogenetically remote lineages.The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL, and GenBank nucleotide sequence databases with accession numbers D50711-DD-50733 and D87131-D87186.  相似文献   

18.
The mdr1 gene, first member of the human multidrug-resistance gene family, is a major gene involved in cellular resistance to several drugs used in anticancer chemotherapy. Its product, the drug-excreting P-glycoprotein, shows a bipartite structure formed by two similar adjacent halves. According to one hypothesis, the fusion of two related ancestral genes during evolution could have resulted in this structure. The DNA sequence analysis of the introns located in the region connecting the two halves of the human mdr1 gene revealed a highly conserved poly(CA) · poly (TG) sequence in intron 15 and repeated sequences of the Alu family in introns 14 and 17. These repeated sequences most likely represent molecular fossils of ancient DNA elements which were involved in such a recombination event. Correspondence to: M. Pauly  相似文献   

19.
20.
The lizard Lacerta vivipara has allopatric oviparous and viviparous populations. The mitochondrial DNA (mtDNA) gene coding for the 16S rRNA was sequenced for several viviparous lizard populations from France, Switzerland, Bulgaria, Czech Republic, The Netherlands, Sweden, and for oviparous lizard populations from the Pyrenean and Cantabric Mountains. Seven distinct groups (three oviparous and four viviparous) were identified. The net nucleotide divergence between oviparous and viviparous haplotypes was 1.3% +/- 0.5 (mean +/- standard deviation). These results on mtDNA, together with other data obtained previously, led us to formulate a biogeographical scenario that could be tested by further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号