首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formin homology 1 (FH1), is a long proline-rich region of formins, shown to bind to five WW containing proteins named formin binding proteins (FBPs). FH1 has several potential binding regions but only the PPLPx motif and its interaction with FBP11WW1 has been characterized structurally. To detect whether additional motifs exist in FH1, we synthesized five peptides and investigated their interaction with FBP28WW2, FBP11WW1 and FBP11WW2 domains. Peptides of sequence PTPPPLPP (positive control), PPPLIPPPP and PPLIPPPP (new motifs) interact with the domains with micromolar affinity. We observed that FBP28WW2 and FBP11WW2 behave differently from FBP11WW1 in terms of motif selection and affinity, since they prefer a doubly interrupted proline stretch of sequence PPLIPP. We determined the NMR structure of three complexes involving the FBP28WW2 domain and the three ligands. Depending on the peptide under study, the domain interacts with two proline residues accommodated in either the XP or the XP2 groove. This difference represents a one-turn displacement of the domain along the ligand sequence. To understand what drives this behavior, we performed further structural studies with the FBP11WW1 and a mutant of FBP28WW2 mimicking the XP2 groove of FBP11WW1. Our observations suggest that the nature of the XP2 groove and the balance of flexibility/rigidity around loop 1 of the domain contribute to the selection of the final ligand positioning in fully independent domains. Additionally, we analyzed the binding of a double WW domain region, FBP11WW1-2, to a long stretch of FH1 using fluorescence spectroscopy and NMR titrations. With this we show that the presence of two consecutive WW domains may also influence the selection of the binding mode, particularly if both domains can interact with consecutive motifs in the ligand. Our results represent the first observation of protein-ligand recognition where a pair of WW and two consecutive motifs in a ligand participate simultaneously.  相似文献   

2.
3.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   

4.
5.
Structure-based drug design is underway to inhibit the S100B-p53 interaction as a strategy for treating malignant melanoma. X-ray crystallography was used here to characterize an interaction between Ca2+-S100B and TRTK-12, a target that binds to the p53-binding site on S100B. The structures of Ca2+-S100B (1.5-Å resolution) and S100B-Ca2+-TRTK-12 (2.0-Å resolution) determined here indicate that the S100B-Ca2+-TRTK-12 complex is dominated by an interaction between Trp7 of TRTK-12 and a hydrophobic binding pocket exposed on Ca2+-S100B involving residues in helices 2 and 3 and loop 2. As with an S100B-Ca2+-p53 peptide complex, TRTK-12 binding to Ca2+-S100B was found to increase the protein's Ca2+-binding affinity. One explanation for this effect was that peptide binding introduced a structural change that increased the number of Ca2+ ligands and/or improved the Ca2+ coordination geometry of S100B. This possibility was ruled out when the structures of S100B-Ca2+-TRTK-12 and S100B-Ca2+ were compared and calcium ion coordination by the protein was found to be nearly identical in both EF-hand calcium-binding domains (RMSD = 0.19). On the other hand, B-factors for residues in EF2 of Ca2+-S100B were found to be significantly lowered with TRTK-12 bound. This result is consistent with NMR 15N relaxation studies that showed that TRTK-12 binding eliminated dynamic properties observed in Ca2+-S100B. Such a loss of protein motion may also provide an explanation for how calcium-ion-binding affinity is increased upon binding a target. Lastly, it follows that any small-molecule inhibitor bound to Ca2+-S100B would also have to cause an increase in calcium-ion-binding affinity to be effective therapeutically inside a cell, so these data need to be considered in future drug design studies involving S100B.  相似文献   

6.
7.
8.
Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF‐16a, a putative ortholog of Caenorhabditis elegans DAF‐16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF‐16 is involved in the insulin/IGF‐I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF‐16a is a member of the FOXO family of forkhead proteins. Proteins 2014; 82:3490–3496. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Wang F  Nguyen M  Qin FX  Tong Q 《Aging cell》2007,6(4):505-514
  相似文献   

10.
ASPP2 is a key protein in regulating apoptosis both in p53-dependent and-independent pathways. The C-terminal part of ASPP2 contains four ankyrin repeats and an SH3 domain (Ank-SH3) that mediate the interactions of ASPP2 with apoptosis related proteins such as p53, Bcl-2 and the p65 subunit of NFκB. p53 core domain (p53CD) binds the n-src loop and the RT loop of ASPP2 SH3. ASPP2 contains a disordered proline rich domain (ASPP2 Pro) that forms an intramolecular autoinhibitory interaction with the Ank-SH3 domains. Here we show how this intramolecular interaction affects the intermolecular interactions of ASPP2 with p53, Bcl-2 and NFkB. We used biophysical methods to obtain better understanding of the relationship between ASPP2 and its partners for getting a comprehensive view on ASPP2 pathways. Fluorescence anisotropy competition experiments revealed that both ASPP2 Pro and p53CD competed for binding the n-src loop of the ASPP2 SH3, indicating regulation of p53CD binding to this loop by ASPP2 Pro. Peptides derived from the ASPP2-binding interface of Bcl-2 did not compete with p53CD or NFkB peptides for binding the ASPP2 n-src loop. However, p53CD displaced the NFκB peptide (residues 303–332) from its complex with ASPP2 Ank-SH3, indicating that NFκB 303–332 and p53CD bind a partly overlapping site in ASPP2 SH3, mostly in the RT loop. These results are in agreement with previous docking studies, which showed that ASPP2 Ank-SH3 binds Bcl-2 and NFκB mostly via distinct sites from p53. However they show some overlap between the binding sites of p53CD and NFkB in ASPP2 Ank-SH3. Our results provide experimental evidence that the intramolecular interaction in ASPP2 regulates its binding to p53CD and that ASPP2 Ank-SH3 binds Bcl-2 and NFκB via distinct sites.  相似文献   

11.
12.
RecQ DNA helicases act in conjunction with heterologous partner proteins to catalyze DNA metabolic activities, including recombination initiation and stalled replication fork processing. For the prototypical Escherichia coli RecQ protein, direct interaction with single-stranded DNA-binding protein (SSB) stimulates its DNA unwinding activity. Complex formation between RecQ and SSB is mediated by the RecQ winged-helix domain, which binds the nine C-terminal-most residues of SSB, a highly conserved sequence known as the SSB-Ct element. Using nuclear magnetic resonance and mutational analyses, we identify the SSB-Ct binding pocket on E. coli RecQ. The binding site shares a striking electrostatic similarity with the previously identified SSB-Ct binding site on E. coli exonuclease I, although the SSB binding domains in the two proteins are not otherwise related structurally. Substitutions that alter RecQ residues implicated in SSB-Ct binding impair RecQ binding to SSB and SSB/DNA nucleoprotein complexes. These substitutions also diminish SSB-stimulated DNA helicase activity in the variants, although additional biochemical changes in the RecQ variants indicate a role for the winged-helix domain in helicase activity beyond SSB protein binding. Sequence changes in the SSB-Ct element are sufficient to abolish interaction with RecQ in the absence of DNA and to diminish RecQ binding and helicase activity on SSB/DNA substrates. These results support a model in which RecQ has evolved an SSB-Ct binding site on its winged-helix domain as an adaptation that aids its cellular functions on SSB/DNA nucleoprotein substrates.  相似文献   

13.
ASPP1 and ASPP2 are activators of p53-dependent apoptosis, whereas iASPP is an inhibitor of p53. Binding assays showed differential binding for C-terminal domains of iASPP and ASPP2 to the core domains of p53 family members p53, p63, and p73. We also determined a high-resolution crystal structure for the C terminus of iASPP, comprised of four ankyrin repeats and an SH3 domain. The crystal lattice revealed an interaction between eight sequential residues in one iASPP molecule and the p53-binding site of a neighboring molecule. ITC confirmed that a peptide corresponding to the crystallographic interaction shows specific binding to iASPP. The contributions of ankyrin repeat residues, in addition to those of the SH3 domain, generate distinctive architecture at the p53-binding site suitable for inhibition by small molecules. These results suggest that the binding properties of iASPP render it a target for antitumor therapeutics and provide a peptide-based template for compound design.  相似文献   

14.
The link between internal enzyme motions and catalysis is poorly understood. Correlated motions in the microsecond-to-millisecond timescale may be critical for enzyme function. We have characterized the backbone dynamics of the peptidylprolyl isomerase (Pin1) catalytic domain in the free state and during catalysis. Pin1 is a prolyl isomerase of the parvulin family and specifically catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 has been shown to be essential for cell-cycle progression and to interact with the neuronal tau protein inhibiting its aggregation into fibrillar tangles as found in Alzheimer's disease. (15)N relaxation dispersion measurements performed on Pin1 during catalysis reveal conformational exchange processes in the microsecond timescale. A subset of active site residues undergo kinetically similar exchange processes even in the absence of a substrate, suggesting that this area is already "primed" for catalysis. Furthermore, structural data of the turning-over enzyme were obtained through inter- and intramolecular nuclear Overhauser enhancements. This analysis together with a characterization of the substrate concentration dependence of the conformational exchange allowed the distinguishing of regions of the enzyme active site that are affected primarily by substrate binding versus substrate isomerization. Together these data suggest a model for the reaction trajectory of Pin1 catalysis.  相似文献   

15.
16.
17.
18.
19.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

20.
Beclin-1, originally identified as a Bcl-2 binding protein, is an evolutionarily conserved protein required for autophagy. The direct interaction between Beclin-1 and Bcl-2 or Bcl-xL provides a potential convergence point for apoptosis and autophagy, two programmed cell death processes. Given the functional significance of the interaction between Beclin-1 and Bcl-2/Bcl-xL, we performed detailed biochemical and structural characterizations of this interaction. We demonstrated that the Bcl-xL-binding domain of Beclin-1 contains a BH3 domain. Therefore, Beclin-1 is a new member of the BH3-only family proteins. The structure of Bcl-xL in complex with the Beclin-1 BH3 domain was determined at high resolution by NMR spectroscopy. Although similar to other known BH3 domains, the Beclin-1 BH3 domain displays its own distinct features in the complex with Bcl-xL. Systematic analysis of all known Bcl-xL/BH3 domain complexes helped us to identify the molecular basis underlying the capacity of Bcl-xL to recognize diverse target sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号