首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.  相似文献   

2.
The number of strand-specific nicking endonucleases that are currently available for laboratory procedures and applications in vivo is limited, and none is sufficiently specific to nick single target sites within complex genomes. The extreme target specificity of homing endonucleases makes them attractive candidates for engineering high-specificity nicking endonucleases. I-SceI is a monomeric homing enzyme that recognizes an 18 bp asymmetric target sequence, and cleaves both DNA strands to leave 3′-overhangs of 4 bp. In single turnover experiments using plasmid substrates, I-SceI generates transient open circle intermediates during the conversion of supercoiled to linear DNA, indicating that the enzyme cleaves the two DNA strands sequentially. A novel hairpin substrate was used to demonstrate that although wild-type I-SceI cleaves either the top or bottom DNA strand first to generate two nicked DNA intermediates, the enzyme has a preference for cleaving the bottom strand. The kinetics data are consistent with a parallel sequential reaction mechanism. Substitution of two pseudo-symmetric residues, Lys122 and Lys223, markedly reduces top and bottom-strand cleavage, respectively, to generate enzymes with significant strand- and sequence-specific nicking activity. The two active sites are partially interdependent, since alterations to one site affect the second. The kinetics analysis is consistent with X-ray crystal structures of I-SceI/DNA complexes that reveal a role for the lysines in establishing important solvent networks that include nucleophilic water molecules thought to attack the scissile phosphodiester bonds.  相似文献   

3.
Restriction endonuclease Bse634I is a homotetramer arranged as a dimer of two primary dimers. Bse634I displays its maximum catalytic efficiency upon binding of two copies of cognate DNA, one per each primary dimer. The catalytic activity of Bse634I on a single DNA copy is down-regulated due to the cross-talking interactions between the primary dimers. The mechanism of signal propagation between the individual active sites of Bse634I remains unclear. To identify communication pathways involved in the catalytic activity regulation of Bse634I tetramer we mutated a selected set of amino acid residues at the dimer-dimer interface and analysed the oligomeric state and catalytic properties of the mutant proteins. We demonstrate that alanine replacement of N262 and V263 residues located in the loop at the tetramerisation interface did not inhibit tetramer assembly but dramatically altered the catalytic properties of Bse634I despite of the distal location from the active site. Kinetic analysis using cognate hairpin oligonucleotide and one and two-site plasmids as substrates allowed us to identify two types of communication signals propagated through the dimer-dimer interface in the Bse634I tetramer: the inhibitory, or "stopper" and the activating, or "sync" signal. We suggest that the interplay between the two signals determines the catalytic and regulatory properties of the Bse634I and mutant proteins.  相似文献   

4.
M Zaremba  G Sasnauskas  V Siksnys 《FEBS letters》2012,586(19):3324-3329
Type II restriction endonucleases (REases) exist in multiple oligomeric forms. The tetrameric REases have two DNA binding interfaces and must synapse two recognition sites to achieve cleavage. It was hypothesised that binding of two recognition sites by tetrameric enzymes contributes to their fidelity. Here, we experimentally determined the fidelity for Bse634I REase in different oligomeric states. Surprisingly, we find that tetramerisation does not increase REase fidelity in comparison to the dimeric variant. Instead, an inherent ability to act concertedly at two sites provides tetrameric REase with a safety-catch to prevent host DNA cleavage if a single unmodified site becomes available.  相似文献   

5.
The SgrAI endonuclease displays its maximal activity on DNA with two copies of its recognition sequence, cleaving both sites concertedly. While most restriction enzymes that act concurrently at two sites are tetramers, SgrAI is a dimer in solution. Its reaction at two cognate sites involves the association of two DNA-bound dimers. SgrAI can also bridge cognate and secondary sites, the latter being certain sequences that differ from the cognate by one base-pair. The mechanisms for cognate-cognate and cognate-secondary communications were examined for sites in the following topological relationships: in cis, on plasmids with two sites in a single DNA molecule; on catenanes containing two interlinked rings of DNA with one site in each ring; and in trans, on oligoduplexes carrying either a single site or the DNA termini generated by SgrAI. Both cognate-cognate and cognate-secondary interactions occur through 3-D space and not by 1-D tracking along the DNA. Both sorts of communication arise more readily when the sites are tethered to each other, either in cis on the same molecule of DNA or by the interlinking of catenane rings, than when released from the tether. However, the dimer bound to an oligoduplex carrying either a cognate or a secondary site could be activated to cleave that duplex by interacting with a second dimer bound to the recognition site, provided both duplexes are at least 30 base-pairs long: the second dimer could alternatively be bound to the two duplexes that correspond to the products of DNA cleavage by SgrAI.  相似文献   

6.
Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.  相似文献   

7.
The SfiI endonuclease cleaves DNA at the sequence GGCCNNNN NGGCC, where N is any base and downward arrow is the point of cleavage. Proteins that recognise discontinuous sequences in DNA can be affected by the unspecified sequence between the specified base pairs of the target site. To examine whether this applies to SFII, a series of DNA duplexes were made with identical sequences apart from discrete variations in the 5 bp spacer. The rates at which SFII cleaved each duplex were measured under steady-state conditions: the steady-state rates were determined by the DNA cleavage step in the reaction pathway. SFII cleaved some of these substrates at faster rates than other substrates. For example, the change in spacer sequence from AACAA to AAACA caused a 70-fold increase in reaction rate. In general, the extrapolated values for k(cat) and K(m) were both higher on substrates with inflexible spacers than those with flexible structures. The dinucleotide at the site of cleavage was largely immaterial. SFII activity is thus highly dependent on conformational variations in the spacer DNA.  相似文献   

8.
Type IIS restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. The restriction endonuclease BpuJI recognizes the asymmetric sequence 5′-CCCGT; however, it cuts at multiple sites in the vicinity of the target sequence. BpuJI consists of two physically separate domains, with catalytic and dimerization functions in the C-terminal domain and DNA recognition functions in the N-terminal domain. Here we report the crystal structure of the BpuJI recognition domain bound to cognate DNA at 1.3-Å resolution. This region folds into two winged-helix subdomains, D1 and D2, interspaced by the DL subdomain. The D1 and D2 subdomains of BpuJI share structural similarity with the similar subdomains of the FokI DNA-binding domain; however, their orientations in protein-DNA complexes are different. Recognition of the 5′-CCCGT target sequence is achieved by BpuJI through the major groove contacts of amino acid residues located on both the helix-turn-helix motifs and the N-terminal arm. The role of these interactions in DNA recognition is also corroborated by mutational analysis.  相似文献   

9.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

10.
The SfiI endonuclease is a prototype for DNA looping. It binds two copies of its recognition sequence and, if Mg(2+) is present, cuts both concertedly. Looping was examined here on supercoiled and relaxed forms of a 5.5 kb plasmid with three SfiI sites: sites 1 and 2 were separated by 0.4 kb, and sites 2 and 3 by 2.0 kb. SfiI converted this plasmid directly to the products cut at all three sites, though DNA species cleaved at one or two sites were formed transiently during a burst phase. The burst revealed three sets of doubly cut products, corresponding to the three possible pairings of sites. The equilibrium distribution between the different loops was evaluated from the burst phases of reactions initiated by adding MgCl(2) to SfiI bound to the plasmid. The short loop was favored over the longer loops, particularly on supercoiled DNA. The relative rates for loop capture were assessed after adding SfiI to solutions containing the plasmid and MgCl(2). On both supercoiled and relaxed DNA, the rate of loop capture across 0.4 kb was only marginally faster than over 2.0 kb or 2.4 kb. The relative strengths and rates of looping were compared to computer simulations of conformational fluctuations in DNA. The simulations concurred broadly with the experimental data, though they predicted that increasing site separations should cause a shallower decline in the equilibrium constants than was observed but a slightly steeper decline in the rates for loop capture. Possible reasons for these discrepancies are discussed.  相似文献   

11.
A target sequence-specific DNA binding region of the restriction endonuclease SsoII was identified by photocross-linking with an oligodeoxynucleotide duplex which was substituted with 5-iododeoxyuridine (5-IdU) at the central position of the SsoII recognition site (CCNGG). For this purpose the SsoII–DNA complex was irradiated with a helium/cadmium laser (325 nm). The cross-linking yield obtained was ~50%. In the presence of excess unmodified oligodeoxynucleotide or with oligodeoxynucleotides substituted with 5-IdU elsewhere, no cross-linking was observed, indicating the specificity of the cross-linking reaction. The cross-linked SsoII-oligodeoxynucleotide complex was digested with chymotrypsin, a cross-linked peptideoligodeoxynucleotide complex isolated and the site of cross-linking identified by Edman sequencing to be Trp61. In line with this identification is the finding that the W61A variant cannot be cross-linked with the IdU-substituted oligodeoxynucleotide, shows a decrease in affinity towards DNA and is inactive in cleavage. It is concluded that the region around Trp61 is involved in specific binding of SsoII to its DNA substrate.  相似文献   

12.
To investigate the alpha-synuclein protein and its role in Parkinson's disease, we screened a library of random point mutants both in vitro and in yeast to find variants in an unbiased way that could help us understand the sequence-phenotype relationship. We developed a rapid purification method that allowed us to screen 59 synuclein mutants in vitro and discovered two double-point mutants that fibrillized slowly relative to wild-type, A30P, and A53T alpha-synucleins. The yeast toxicity of all of these proteins was measured, and we found no correlation with fibrillization rate, suggesting that fibrillization is not necessary for synuclein-induced yeast toxicity. We found that beta-synuclein was of intermediate toxicity to yeast, and gamma-synuclein was non-toxic. Co-expression of Parkinson's disease-related genes DJ-1, parkin, Pink1, UCH-L1, or synphilin, with synuclein, did not affect synuclein toxicity. A second screen, of several thousand library clones in yeast, identified 25 non-toxic alpha-synuclein sequence variants. Most of these contained a mutation to either proline or glutamic acid that caused a defect in membrane binding. We hypothesize that yeast toxicity is caused by synuclein binding directly to membranes at levels sufficient to non-specifically disrupt homeostasis.  相似文献   

13.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

14.
The effect of DNA vector topology when complexed to poly-l-lysine (PLL) and its quantification in transfection efficiency has not been fully addressed even though it is thought to be of importance from both production and regulatory viewpoints. This study investigates and quantifies cell uptake followed by transfection efficiency of PLL:DNA complexes (polyplexes) in Chinese hamster ovary (CHO) cells and their dependence on DNA topology. PLL is known for its ability to condense DNA and serve as an effective gene delivery vehicle. Characterization of PLL conjugated to a 6.9 kb plasmid was carried out. Dual labeling of both the plasmid DNA (pDNA) and PLL enabled quantitative tracking of the complexed as well as dissociated elements, within the cell, and their dependence on DNA topology. Polyplex uptake was quantified by confocal microscopy and image analysis. Supercoiled (SC) pDNA when complexed with PLL, forms a polyplex with a mean diameter of 139.06 nm (±0.84% relative standard error [RSE]), whereas open circular (OC) and linear-pDNA counterparts displayed mean diameters of 305.54 (±3.2% RSE) and 841.5 nm (±7.2% RSE) respectively. Complexes containing SC-pDNA were also more resistant to nuclease attack than its topological counterparts. Confocal microscope images reveal how the PLL and DNA remain bound post transfection. Quantification studies revealed that by 1 h post transfection 61% of SC-pDNA polyplexes were identified to be associated with the nucleus, in comparison to OC- (24.3%) and linear-pDNA polyplexes (3.5%) respectively. SC-pDNA polyplexes displayed the greatest transfection efficiency of 41% which dwarfed that of linear-pDNA polyplexes of 18.6%. Collectively these findings emphasize the importance of pDNA topology when complexed with PLL for gene delivery with the SC-form being a key pre-requisite.  相似文献   

15.
The efficiency of cleavage of DNA duplexes with single EcoRII recognition sites by the EcoRII restriction endonuclease decreases with increasing substrate length. DNA duplexes of more than 215 bp are not effectively cleaved by this enzyme. Acceleration of the hydrolysis of long single-site substrates by EcoRII is observed in the presence of 11-14-bp substrates. The stimulation of hydrolysis depends on the length and concentration of the second substrate. To study the mechanism of EcoRII endonuclease stimulation, DNA duplexes with base analogs and modified internucleotide phosphate groups in the EcoRII site have been investigated as activators. These modified duplexes are cleaved by EcoRII enzyme with different efficiencies or are not cleaved at all. It has been discovered that the resistance of some of them can be overcome by incubation with a susceptible canonical substrate. The acceleration of cleavage of long single-site substrates depends on the type of modification of the activator. The modified DNA duplexes can activate EcoRII catalyzed hydrolysis if they can be cleaved by EcoRII themselves or in the presence of the second canonical substrate. It has been demonstrated that EcoRII endonuclease interacts in a cooperative way with two recognition sites in DNA. The cleavage of one of the recognition sites depends on the cleavage of the other. We suggest that the activator is not an allosteric effector but acts as a second substrate.  相似文献   

16.
Several mutations in gene B of phage S13 appear to shorten the B protein by elimination of an N-terminal fragment, without destroying the B protein function. The shortened B protein resulting from each of these mutations can block the unique DNA-nicking properties of the S13 gene A protein. Because of the block in gene A function, normal gene B protein may have a function in phage DNA synthesis in addition to its known role in catalyzing capsid assembly.From gel electrophoresis the mutant B protein is estimated to be shorter than the normal S13 B protein by 1720 ± 70 daltons and is therefore believed to be an internal reinitiation fragment. The reinitiated fragments are functional and are made in about twice the amount of the normal B protein.The phage mutants which yield the reinitiation fragments are double mutants, each phage containing the same gene B nonsense mutation and each appearing to contain a different compensating gene B mutation. Various data support the assumption that the compensating mutations are frame-shifts, including the fact that suppression does not restore the normal-sized B protein. The reinitiation is assumed to occur at a pre-existing out-of-phase initiator codon, near the nonsense triplet; the correct reading frame would then be restored by each of the several different compensating mutations.The position of the normal S13 B protein in the gel electrophoresis pattern has been located both by elimination and shifting of the B peak, using appropriate amber mutants. The molecular weight of the S13 B protein is about 17,200, and is 2100 daltons less than the B protein of phage φX174; the S13 B protein can nevertheless substitute for the φX 174 B protein. Thus substantial portions of the B protein can be deleted without destroying its function.  相似文献   

17.
S K Moore  E James 《Gene》1979,5(2):159-175
A detailed physical map depicting the cleavage sites generated by ten different restriction endonucleases was prepared for the argF region of the Escherichia coli K-12 genome carried on a 1650 base pair fragment capable of directing the in vitro synthesis of ornithine transcarbamylase (OTCase; ec 2.1.3.3) under the control of arginine holorepressor. The method employed was originally developed by Smith and Birnstiel (1976), and involved the electrophoretic sizing of partial endonuclease digestion products of DNA radiolabeled at one end. This novel technique proved to be rapid, simple, amenable to the simultaneous mapping of numerous cleavage sites, and provided the essential information for determining the map order of restriction fragments. A facile method which involved magnesium phosphate as the DNA-binding agent was presented for the isolation of DNA fragments. The discovery of a 117 base pair leader sequence in the argF gene is also discussed.  相似文献   

18.
To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.  相似文献   

19.
The type III restriction-modification enzyme EcoP15I requires the interaction of two unmethylated, inversely oriented recognition sites 5'-CAGCAG in head to head configuration to allow an efficient DNA cleavage. It has been hypothesized that two convergent DNA-translocating enzyme-substrate complexes interact to form the active cleavage complex and that translocation is driven by ATP hydrolysis. Using a half-automated, fluorescence-based detection method, we investigated how the distance between two inversely oriented recognition sites affects DNA cleavage efficiency. We determined that EcoP15I cleaves DNA efficiently even for two adjacent head to head or tail to tail oriented target sites. Hence, DNA translocation appears not to be required for initiating DNA cleavage in these cases. Furthermore, we report here that EcoP15I is able to cleave single-site substrates. When we analyzed the interaction of EcoP15I with DNA substrates containing adjacent target sites in the presence of non-hydrolyzable ATP analogues, we found that cleavage depended on the hydrolysis of ATP. Moreover, we show that cleavage occurs at only one of the two possible cleavage positions of an interacting pair of target sequences. When EcoP15I bound to a DNA substrate containing one recognition site in the absence of ATP, we observed a 36 nucleotide DNaseI-footprint that is asymmetric on both strands. All of our footprinting experiments showed that the enzyme did not cover the region around the cleavage site. Analyzing a DNA fragment with two head to head oriented recognition sites, EcoP15I protected 27-33 nucleotides around the recognition sequence, including an additional region of 26 bp between both cleavage sites. For all DNA substrates examined, the presence of ATP caused altered footprinting patterns. We assume that the altered patterns are most likely due to a conformational change of the enzyme. Overall, our data further refine the tracking-collision model for type III restriction enzymes.  相似文献   

20.
The two codon-specific eubacterial release factors (RF1: UAA/UAG and RF2: UAA/UGA) have specific tripeptide motifs (PXT/SPF) within an exposed recognition loop shown in recent structures to interact with stop codons during protein synthesis termination. The motifs have been inferred to be critical for codon specificity, but this study shows that they are insufficient to determine specificity alone. Swapping the motifs or the entire loop between factors resulted in a loss of codon recognition rather than a switch of codon specificity. From a study of chimeric eubacterial RF1/RF2 recognition loops and an atypical shorter variant in Caenorhabditis elegans mitochondrial RF1 that lacks the classical tripeptide motif PXT, key determinants throughout the whole loop have been defined. It reveals that more than one configuration of the recognition loop based on specific sequence and size can achieve the same desired codon specificity. This study has provided unexpected insight into why a combination of the two factors is necessary in eubacteria to exclude recognition of UGG as stop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号