首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of troponin molecules on the thin filament with Ca2+ plays a key role in regulating muscle contraction. To characterize the structural changes of troponin caused by Ca2+ and crossbridge formation, we recorded the small-angle x-ray intensity and the myoplasmic free Ca2+ concentration using fluo-3 AM in the same frog skeletal muscle during twitch elicited by a single electrical pulse at 16°C. In an overstretched muscle, the intensity of the meridional reflection from troponin at 1/38.5 nm−1 began to change at 4 ms after the stimulus, reached a peak at 10 ms, and returned to the resting level with a halftime of 25 ms. The concentration of troponin-bound Ca2+ began to increase at 1-2 ms after the stimulus, reached a peak at 5 ms, and returned to the resting level with a halftime of 40 ms, indicating that troponin begins to change conformation only after a sizable amount of Ca2+ has bound to it, and returns to the resting structure even when there is still some bound Ca2+. In a muscle with a filament overlap, crossbridge formation appears to slow down Ca2+ release from troponin and have a large effect on its conformation.  相似文献   

2.
In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by ∼0.1% upon activation relative to the relaxing state and increased by ∼0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca2+-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca2+-binding and the second induced by actomyosin interaction.  相似文献   

3.
Structural changes in frog skeletal muscle were studied using x-ray diffraction with a time resolution of 0.53–1.02 ms after a single electrical stimulus at 8°C. Tension began to drop at 6 ms (latency relaxation), reached a minimum at 8 ms, and then twitch tension developed. The intensity of the meridional reflection at 1/38.5 nm−1, from troponin molecules on the thin filament, began to increase at 4–5 ms and reached a maximum at ~12 ms. The meridional reflections based on the myosin 43-nm repeat began to decrease when the tension began to develop. The peak position of the third-order myosin meridional reflection began to shift toward the higher angle at ~5 ms, reached a maximum shift (0.02%) at 10 ms, and then moved toward the lower angle. The intensity of the second actin layer line at 1/18 nm−1 in the axial direction, which was measured at 12°C, began to rise at 5 ms, whereas the latency relaxation started at 3.5 ms. These results suggest that 1), the Ca2+-induced structural changes in the thin filament and a structural change in the thick filament have already taken place during latency relaxation; and 2), the Ca2+ regulation of the thin filament is highly cooperative.  相似文献   

4.
The pattern given by contracting frog muscle can be followed with high time resolution using synchrotron radiation as a high-intensity X-ray source. We have studied the behaviour of the second actin layer-line (axial spacing of approximately 179 A) at an off-meridional spacing of approximately 0.023 A-1, a region of the diagram that is sensitive to the position of tropomyosin in the thin filaments. In confirmation of earlier work, we find that there is a substantial increase in the intensity of this part of the pattern during contraction. We find that the reflection reaches half its final intensity about 17 milliseconds after the stimulus at 6 degrees C. The changes in the equatorial reflections, which arise from movement of crossbridges towards the thin filaments, occur with a delay of about 12 to 17 milliseconds relative to this change in the actin pattern. In over-stretched muscle, where thick and thin filaments no longer overlap, the changes in the actin second layer-line still take place upon stimulation with a time course and intensity similar to that observed at full overlap. This indicates that tropomyosin movement, in response to calcium binding to troponin, is the first structural step in muscular contraction, and is the prerequisite for myosin binding. A change in intensity similar to that found in contracting muscle is seen in rigor, where tropomyosin is probably locked in the active position. During relaxation the earlier stages in the decrease in intensity of the second actin layer-line take place significantly sooner after the last stimulus than tension decay. In over-stretched muscles the intensity decay is appreciably faster than in the same muscles at rest length, where attached crossbridges may interfere with the return of tropomyosin to its resting position.  相似文献   

5.
The trigger Ca2+-binding sites in troponin C, those which initiate muscle contraction, are thought to be the first two of four potential sites (sites I-IV). In cardiac troponin C, the first Ca2+-binding site is inactive, and initiation of contraction in cardiac muscle appears to involve only the second site. To study this phenomenon and associated Ca2+-dependent protein conformational changes in cardiac troponin C, the cDNA for the chicken protein was incorporated into a bacterial expression plasmid to allow site-specific mutagenesis. Ca2+-binding site I was activated by deletion of Val-28 and conversion of amino acids 29-32 to those found at the first four positions in the active site I of fast skeletal troponin C. In a series of proteins, Ca2+-binding site II was inactivated by mutation of amino acids Asp-65, Asp-67, and Gly-70. All mutated proteins exhibited the predicted calcium-binding characteristics. The single mutation of converting Asp-65 to Ala was sufficient to inactivate site II. Ca2+-dependent conformational changes in the normal and mutated proteins were monitored by labeling with a sulfhydryl-specific fluorescent dye. Activation of Ca2+-binding site I or inactivation of site II, eliminated the large Ca2+-dependent increase in fluorescence seen in the wild type protein and there was, instead, a Ca2+-dependent decrease in fluorescence. All mutant proteins could associate with troponin I and troponin T to form a troponin complex. Activation of Ca2+-binding site I changed the characteristics of contraction in skinned slow skeletal muscle fibers such that the response to Ca2+ was more cooperative. Inactivation of Ca2+-binding site II abolished Ca2+-dependent contraction in skinned muscle fibers. The data provide a direct demonstration that Ca2+-binding site II in cardiac troponin C is essential for triggering muscle contraction and support the hypothesis that site I functions to modify the characteristics of contraction.  相似文献   

6.
Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.  相似文献   

7.
By using skinned-rabbit skeletal muscle fibers, the time courses of changes of thin filament-based x-ray reflections were followed at a 3.4-ms time resolution during thin-filament activation. To discriminate between the effects of calcium binding and myosin binding on thin-filament activity, measurements were performed after caged-calcium photolysis in fibers with full-filament or no-filament overlap, or during force recovery after a quick release. All three reflections examined, i.e., the second actin layer line (second ALL, reporting the tropomyosin movement), the sixth ALL (reporting actin structural change), and the meridional troponin reflections, exhibited calcium-induced and myosin-induced components, but their rate constants and polarities were different. Generally, calcium-induced components exhibited fast rate constants (>100 s−1). The myosin-induced components of the second ALL had a rate constant similar to that of the force (7-10 s−1), but that of the sixth ALL was apparently faster. The myosin-induced component of troponin reflection was the only one with negative polarity, and was too slow to be analyzed with this protocol. The results suggest that the three regulation-related proteins change their structures with different rate constants, and the significance of these findings is discussed in the context of a cooperative thin-filament activation mechanism.  相似文献   

8.
The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.  相似文献   

9.
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+ binding to TnC (the Ca2+ sensor of troponin that relieves inhibition) presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI (the “inhibitory” subunit of troponin) with tropomyosin and actin that cause tropomyosin movement are unknown, and thus, the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI, and then, 3D electron microscopy was used to resolve where troponin is anchored on actin-tropomyosin. Electron microscopy reconstruction showed how TnI binding to both actin and tropomyosin at low Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus, the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric interference of actin-myosin interaction that regulates muscle contraction.  相似文献   

10.
Troponin-mediated Ca2+-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure–function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.  相似文献   

11.
The purpose of this study was to determine the effects of summation of contraction on acceleration signals in human skeletal muscle. The torque parameters of dorsiflexion and acceleration signals in the tibialis anterior muscle were measured during evoked isometric contractions. In an examination of two-pulse trains with different inter-pulse intervals, the torque and accelerometer responses to inter-pulse intervals of 10–100 ms were recorded. In an investigation of the effects of different numbers of stimuli, the torque and accelerometer responses to 1–8 pulses with a constant inter-pulse interval of 10 ms were recorded. The present study found that there was a difference in acceleration amplitude between the single-pulse and two-pulse trains with an inter-pulse interval of 10 ms but not two-pulse trains with an inter-pulse interval of 20 ms or more. In the investigation of different numbers of stimuli, we found a similar MMG amplitude across 2–8 pulses. Moreover, we observed that the maximal time to the peak acceleration signal was ~27 ms. In a comparison of torque parameters with acceleration signals, the present study clearly shows that acceleration amplitude is poorly correlated to changes in force parameters when the inter-pulse interval or the number of stimuli are increased. These results suggest that the absence of associated changes in acceleration peak is due to the long interval for the subsequent pulses relative to the time at which acceleration peak is achieved (~27 ms). These findings will provide useful information concerning the method for assessing summation of contraction with an accelerometer.  相似文献   

12.
To characterize the vasodilatory response in the transition from a single skeletal contraction to a series of contractions, we measured the response of hamster cremaster muscle arterioles associated with four to five skeletal muscle fibers stimulated to contract for one, two, three, or four contractions (250-ms train duration) at 4-s intervals [15 contractions per minute (CPM)] for up to 12 s, at stimulus frequencies of 4, 10, 20, 30, 40, 60, and 80 Hz. To investigate the contribution of contraction frequency, we stimulated muscle fiber bundles at 30 or 60 CPM for 12 s at stimulus frequencies of 4, 20, and 60 Hz. Arteriolar diameters at the site of overlap with the stimulated muscle fibers were measured before and after each contraction. At 15 CPM at 4, 20, and 60 Hz, we observed a peak change in diameter following the first contraction of 1.1 +/- 0.1, 1.6 +/- 0.2, and 2.1 +/- 0.2 mum that almost doubled in response to the second contraction (2.0 +/- 0.1, 3.0 +/- 0.1, and 3.8 +/- 0.1 mum, respectively), but there was no further dilation following the third or fourth contraction. A similar response occurred at all stimulus and contraction frequencies tested. At 30 and 60 CPM at 60 Hz, the plateau after two contractions was followed by a further increase in diameter to a second plateau at 7-8 s. Therefore, the vasodilatory response in the transition from single to multiple contractions had components that were stimulation parameter dependent and independent and showed a plateauing behavior indicative of rapid changes in either the nature and/or concentration of vasodilators released or changes in vascular reactivity.  相似文献   

13.
Upon activation of living or skinned vertebrate skeletal muscle fibers, the sixth X-ray layer-line reflection from actin (6th ALL) is known to intensify, without a shift of its peak position along the layer line. Since myosin attachment to actin is expected to shift the peak towards the meridian, this intensification is considered to reflect the structural change of individual actin monomers in the thin filament. Here, we show that the 6th ALL of skinned insect flight muscles (IFMs) is rather weakened upon isometric calcium activation, and its peak shifts away from the meridian. This suggests that the actin monomers in the two types of muscles change their structures in substantially different manners. The changes that occurred in the 6th ALL of IFM were not diminished by lowering the temperature from 20 to 5 °C, while active force was greatly reduced. The inclusion of 100 μM blebbistatin (a myosin inhibitor) did not affect the changes either. This suggests that calcium binding to troponin C, rather than myosin binding to actin, causes the structural change of IFM actin.  相似文献   

14.
Skinned muscle fibers prepared from fetal rabbit heart (28 days of gestation) showed a marked resistance to acidic pH in the Ca(2+) regulation of force generation, compared to the fibers prepared from adult heart. SDS-PAGE and immunoblot analysis showed that the slow skeletal troponin I was predominantly expressed in the fetal cardiac muscle, while the cardiac isoform was predominantly expressed in the adult cardiac muscle. Direct exchange of purified slow skeletal and cardiac troponin I isoforms into these skinned muscle fibers revealed that cardiac troponin I made the Ca(2+) regulation of contraction sensitive to acidic pH just as in the adult fibers, whereas slow skeletal troponin I made the Ca(2+) regulation of contraction resistant to acidic pH just as in the fetal fibers. These results demonstrate that the troponin I isoform switching accounts fully for the change in the pH dependence of Ca(2+) regulation of contraction in developmental cardiac muscle.  相似文献   

15.
Troponin complex is a component of skeletal and cardiac muscle thin filaments. It consists of three subunits — troponin I, T, and C, and it plays a crucial role in muscle activity, connecting changes in intracellular Ca2+ concentration with generation of contraction. In spite of more than 40 years of studies, many aspects of troponin functioning are still not completely understood, and several models describing the mechanism of muscle contraction exist. Being a key factor in the regulation of cardiac muscle contraction, troponin complex is utilized in medicine as a target for some cardiotonic drugs used in the treatment of heart failure. A number of mutations in troponin subunits are associated with development of different types of cardiomyopathy. Moreover, for the last 25 years cardiac isoforms of troponin I and T have been widely used for immunochemical diagnostics of pathologies associated with cardiomyocyte death (myocardial infarction, myocardial trauma, and others). This review summarizes the existing evidence on the structure and function of troponin complex subunits, their role in the regulation of cardiac muscle contraction, and their clinical applications.  相似文献   

16.
We tested the hypothesisthat low specific tension (force/cross-sectional area) in skeletalmuscle from aged animals results from structural changes in myosin thatoccur with aging. Permeabilized semimembranosus fibers from young adultand aged rats were spin labeled site specifically at myosin SH1(Cys-707). Electron paramagnetic resonance (EPR) was then used toresolve and quantify the structural states of the myosin head todetermine the fraction of myosin heads in the strong-binding (forcegenerating) structural state during maximal isometric contraction.Fibers from aged rats generated 27 ± 0.8% less specific tensionthan fibers from younger rats (P < 0.001). EPRspectral analyses showed that, during contraction, 31.6 ± 2.1%of myosin heads were in the strong-binding structural state in fibersfrom young adult animals but only 22.1 ± 1.3% of myosin heads infibers from aged animals were in that state (P = 0.004). Biochemical assays indicated that the age-related change inmyosin structure could be due to protein oxidation, as indicated by adecrease in the number of free cysteine residues. We conclude thatmyosin structural changes can provide a molecular explanation forage-related decline in skeletal muscle force generation.

  相似文献   

17.
1. New methods of preparing troponins from slow skeletal and cardiac muscle of the chicken have been developed. The electrophoretic mobilities of slow skeletal muscle troponin subunits were different from those of the corresponding fast skeletal muscle subunits. 2. A new method for determining the amount of divalent cations bound to troponin was developed. The principle of the method is to immobilize troponin by conjugating it with Sepharose 4B resin, thus making it readily sedimentable. 3. The numbers of Sr and Ca ions bound to slow muscle troponin at concentrations sufficient to produce maximum contraction were 1.73 and 1.36 mol per mol, respectively, being nearly equal to those of cardiac troponin but half of those of fast muscle troponin. 4. The concentrations of Sr and Ca ions giving half-maximal ion binding to slow muscle troponin (K50%) were 5.5 X 10(-6) M and 4.6 X 10(-7) M, respectively. 5. K50% for Sr of cardiac troponin was significantly higher than that of slow muscle troponin. Although K50% for Sr of cardiac troponin was the same as that of fast muscle troponin, cardiac troponin bound more Sr ions than fast muscle troponin at lower Sr ion concentrations. The mechanism underlying the high sensitivity of cardiac muscle contraction to Sr ions is discussed in comparison with that of slow muscle.  相似文献   

18.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

19.
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).  相似文献   

20.
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca2+ and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca2+ allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca2+-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca2+, troponin operates as an inhibitor, while in activated muscles at high Ca2+, it acts as a promoter to initiate contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号