首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymatic oxidation of the acetaminophen analogue 3',5'-dimethyl-4'-hydroxyacetanilide (3',5'-dimethylacetaminophen) with the horseradish peroxidase/hydrogen peroxide system forms a phenoxyl free radical metabolite. The structure of this free radical is established by a complete analysis of the ESR spectrum and confirmed by deuterium isotope substitution. Concomitant with phenoxyl radical formation, N-acetyl-3,5-dimethyl-p-benzoquinone imine was detected by optical spectroscopy. The free radical is also formed by comproportionation in solutions of the quinone imine containing added 3',5'-dimethylacetaminophen. In contrast to acetaminophen, the imine and radical metabolites are stable and can be detected without resort to rapid-mixing techniques. Factors leading to the increased stability of these metabolites relative to those formed from acetaminophen are discussed in terms of the toxicity of acetaminophen.  相似文献   

2.
Free radical formation from VP 16-213 was studied by ESR spectroscopy. Incubation of VP 16-213 with the one-electron oxidators persulphate-ferrous, myeloperoxidase (MPO)/hydrogen peroxide and horseradish peroxidase (HRP)/hydrogen peroxide readily led to the formation of a free radical. The ESR spectra obtained in the last two cases, were in perfect accord with that of a product obtained by electrochemical oxidation of VP 16-213 at +550 mV. The half-life of the free radical in 1 mM Tris (pH 7.4), 0.1 MNaClat 20°C, was 257 ± 4 s. The signal recorded on incubation with HRP/H2O2 or MPO/H2O2 did not disappear on addition of 0.3 - 1.2 mg/ml microsomal protein. From incubations with rat liver microsomes in the presence of NADPH, no ESR signals were obtained.  相似文献   

3.
《Free radical research》2013,47(4):263-272
Free radical formation from VP 16-213 was studied by ESR spectroscopy. Incubation of VP 16-213 with the one-electron oxidators persulphate-ferrous, myeloperoxidase (MPO)/hydrogen peroxide and horseradish peroxidase (HRP)/hydrogen peroxide readily led to the formation of a free radical. The ESR spectra obtained in the last two cases, were in perfect accord with that of a product obtained by electrochemical oxidation of VP 16-213 at +550 mV. The half-life of the free radical in 1 mM Tris (pH 7.4), 0.1 MNaClat 20°C, was 257 ± 4 s. The signal recorded on incubation with HRP/H2O2 or MPO/H2O2 did not disappear on addition of 0.3 - 1.2 mg/ml microsomal protein. From incubations with rat liver microsomes in the presence of NADPH, no ESR signals were obtained.  相似文献   

4.
Benzidine and related compounds are well known substrates for horseradish peroxidase/H2O2 oxidation. Typically, two different colored products are formed. In this paper, we study the oxidation of 3,5,3',5'-tetramethylbenzidine. The first colored product is a blue charge-transfer complex of the parent diamine and the diimine oxidation product. This species exists in rapid equilibrium with the radical cation. The radical was observed by ESR spectroscopy, and hyperfine splitting constants were determined. Addition of equimolar hydrogen peroxide yields the yellow diimine, which is stable at acid pH. At less than equimolar peroxide, all four species (diamine, radical cation, charge-transfer complex, and diimine) exist in equilibrium. A theoretical analysis of this redox system is presented, including a determination of the extinction coefficients and equilibrium constant for the nonradical species.  相似文献   

5.
The acetaminophen phenoxyl radical was generated by the oxidation of acetaminophen by horseradish peroxidase in a fast-flow ESR experiment, and its reaction with glutathione and ascorbate was studied. Glutathione reduces the phenoxyl radical of acetaminophen to regenerate acetaminophen and form the thiyl radical of glutathione. This thiyl radical reacts with the thiolate anion of glutathione to form the disulfide radical anion, which was detected and characterized by ESR spectroscopy. In the presence of ascorbate, the ascorbyl radical was produced by the reduction of the acetaminophen phenoxyl radical by ascorbate. This reaction results in the complete reduction of the free radical of acetaminophen, whereas the glutathione reduction of the phenoxyl radical of acetaminophen was not complete on the fast-flow ESR time scale of milliseconds. This suggests that ascorbate rather than glutathione is more likely to react with the acetaminophen phenoxyl free radical in vivo. In the presence of both ascorbate and higher concentrations of glutathione, the reaction with ascorbate is dominant. When cysteine was used in the place of reduced glutathione in the above assay system, the disulfide radical anion of cystine was observed in a manner similar to glutathione. These reactions may have significance in the detoxification of acetaminophen and the free radical metabolites of xenobiotics in general. Only in cells containing low levels of ascorbate can glutathione play a direct role in the detoxification of the acetaminophen phenoxyl radical.  相似文献   

6.
One- and two-electron oxidation of reduced glutathione by peroxidases   总被引:3,自引:0,他引:3  
The oxidation of glutathione by horseradish peroxidase forms a thiyl free radical as demonstrated with the spin trapping ESR technique. Reactions of this thiyl free radical result in oxygen consumption, which is inhibited by the radical trap 5,5-dimethyl-1-pyrroline-N-oxide. In contrast to L-cysteine oxidation, glutathione oxidation is highly hydrogen peroxide-dependent. The oxidation of glutathione by glutathione peroxidase forms glutathione disulfide without forming a thiyl radical intermediate, except in the presence of the thiyl radical-generating horseradish peroxidase.  相似文献   

7.
For the first time, the enzymatic one-electron oxidation of several naturally occurring and synthetic water-soluble porphyrins by peroxidases was investigated by ESR and optical spectroscopy. The ESR spectra of the free radical metabolites of the porphyrins were singlets (g = 2.0024, delta H = 2-3 G), which we assigned to their respective porphyrin pi-cation free radicals. Several porphyrins were investigated and ranked by the intensity of their ESR spectra (coproporphyrin III greater than coproporphyrin I greater than deuteroporphyrin IX greater than mesoporphyrin IX greater than Photofrin II greater than protoporphyrin IX greater than uroporphyrin I greater than uroporphyrin III greater than hematoporphyrin IX). The porphyrins were oxidized by several peroxidases (horseradish peroxidase, lactoperoxidase, and myeloperoxidase), yielding the same type of ESR spectra. From these results, we conclude that porphyrins are substrates for peroxidases. The changes in the visible absorbance spectra of the porphyrins during enzymatic oxidation were monitored. The two-electron oxidation product, which was assigned to the dihydroxyporphyrin, was detected as an intermediate of the oxidation process. The optical spectrum of the porphyrin pi-cation free radical was not detected, probably due to its low steady-state concentration.  相似文献   

8.
The azidyl radical is formed during the oxidation of sodium azide by the catalase/hydrogen peroxide system, as detected by the ESR spin-trapping technique. The oxidation of azide by horseradish peroxidase, chloroperoxidase, lactoperoxidase, and myeloperoxidase also forms azidyl radical. It is suggested that the evolution of nitrogen gas and nitrogen oxides reported in the azide/catalase/hydrogen peroxide system results from reactions of the azidyl radical. The azide/horseradish peroxidase/hydrogen peroxide system consumes oxygen, and this oxygen uptake is inhibited by the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, presumably due to the competition with oxygen for the azidyl radical. Although azide is used routinely as an inhibitor of myeloperoxidase and catalase, some consideration should be given to the biochemical consequences of the formation of the highly reactive azidyl radical by the peroxidase activity of these enzymes.  相似文献   

9.
Horseradish peroxidase-catalyzed oxidation of p-phenetidine in the presence of either glutathione (GSH), cysteine, or N-acetylcysteine led to the production of the appropriate thioyl radical which could be observed using EPR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. This confirms earlier work using acetaminophen (Ross, D., Albano, E., Nilsson, U., and Moldéus, P. (1984) Biochem. Biophys. Res. Commun. 125, 109-115). The further reactions of glutathionyl radicals (GS.), generated during horseradish peroxidase-catalyzed oxidation of p-phenetidine and acetaminophen in the presence of GSH, were investigated by following kinetics of oxygen uptake and oxidized glutathione (GSSG) formation. Oxygen uptake and GSSG generation were dependent on the concentration of GSH but above that which was required for maximal interaction with the primary amine or phenoxy radical generated during peroxidatic oxidation of p-phenetidine or acetaminophen, suggesting that a secondary GSH-dependent process was responsible for oxygen uptake and GSSG production. GSSG was the only product of thiol oxidation detected during peroxidatic oxidation of p-phenetidine or acetaminophen in the presence of GSH, but under nitrogen saturation conditions its production was reduced to 8 and 33% of the corresponding amounts obtained under aerobic conditions in the cases of p-phenetidine and acetaminophen, respectively. Nitrogen saturation conditions did not affect horseradish peroxidase-catalyzed metabolism. This shows that the main route of GSSG generation in such reactions is not by dimerization of GS. but via mechanism(s) involving oxygen consumption such as via GSSG-. or via GSOOH.  相似文献   

10.
Crystal violet (gentian violet) can undergo an oxidative metabolism, catalyzed by horseradish peroxidase, resulting in formaldehyde formation. The N-demethylation reaction was strongly inhibited by reduced glutathione. Evidence for the formation of a crystal violet radical during the horseradish peroxidase catalyzed reaction was the detection of thiyl and ascorbate radicals from glutathione and ascorbate, respectively. The concentration of radicals from both compounds was significantly increased in the presence of crystal violet. Oxygen uptake was stimulated when glutathione was present in the system and this oxygen uptake was dependent on the dye and enzyme concentration. Oxygen uptake did not occur when ascorbate, instead of glutathione, was present in the system. However, when glutathione was present, ascorbate totally inhibited the glutathione-stimulated oxygen uptake in the crystal violet/horseradish peroxidase/hydrogen peroxide system. Although a weak ESR spectrum from a crystal violet-derived free radical was detected when the dye reacted with H2O2 and horseradish peroxidase, using the fast flow technique, this spectrum could not be interpreted.  相似文献   

11.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

12.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

13.
We optimized the conditions for luminol oxidation by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3-8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

14.
The peroxidase catalyzed oxidation of certain drugs in the presence of glutathione (GSH) resulted in extensive oxidation to oxidized glutathione (GSSG). Extensive oxygen uptake ensued and thiyl radicals could be trapped. Only catalytic amounts of drugs were required indicating a redox cycling mechanism. Active drugs included phenothiazines, aminopyrine, p-phenetidine, acetaminophen and 4-N,N-(CH3)2-aminophenol. Other drugs, including dopamine and alpha-methyl dopa, did not catalyse oxygen uptake, nor were GSSG or thiyl radicals formed. Instead, GSH was depleted by GSH conjugate formation. Drugs of the former group, e.g. acetaminophen, aminopyrine or N,N-(CH3)2-aniline have also been found by other investigators to form GSSG and hydrogen peroxide when added to hepatocytes or when perfused through an isolated liver. Although cytochrome P-450 normally catalyses a two-electron oxidation of drugs, serious consideration should be given for some one-electron oxidation resulting in radical formation, oxygen activation and GSSG formation.  相似文献   

15.
Malondialdehyde, a product of lipid peroxidation, and acetylacetone undergo one-electron oxidation by peroxidase enzymes to form free radical metabolites, which were detected with ESR using the spin-trapping technique. The structures of the radical adducts were assigned using isotope substitution. With both malondialdehyde and acetylacetone and the enzymes myeloperoxidase and chloroperoxidase, carbon-centered radicals were detected. With horseradish peroxidase, a carbon-centered radical was initially trapped and then disappeared with the concomitant appearance of an iminoxyl radical.  相似文献   

16.
Oxidized bovine cytochrome c oxidase reacts with hydrogen peroxide to generate two electron paramagnetic resonance (EPR) free radical signals (Fabian, M., and Palmer, G. (1995) Biochemistry 34, 13802-13810). These radicals are associated with the binuclear center and give rise to two overlapped EPR signals, one signal being narrower in line width (DeltaHptp = 12 G) than the other (DeltaHptp = 45 G). We have used electron nuclear double resonance (ENDOR) spectrometry to identify the two different chemical species giving rise to these two EPR signals. Comparison of the ENDOR spectrum associated with the narrow signal with that of compound I of horseradish peroxidase (formed by reaction of that enzyme with hydrogen peroxide) demonstrates that the two species are virtually identical. The chemical species giving rise to the narrow signal is therefore identified as an exchange-coupled porphyrin cation radical similar to that formed in horseradish peroxidase compound I. Comparison of the ENDOR spectrum of compound ES (formed by the reaction of hydrogen peroxide with cytochrome c peroxidase) with that of the broad signal indicates that the chemical species giving rise to the broad EPR signal in cytochrome c oxidase is probably an exchange coupled tryptophan cation radical. This is substantiated using H(2)O/D(2)O solvent exchange experiments where the ENDOR difference spectrum of the broad EPR signal of cytochrome c oxidase shows a feature consistent with hyperfine coupling to the exchangeable N(1) proton of a tryptophan cation radical.  相似文献   

17.
The possible metabolic activation of nitrosonaphthols, suspected carcinogens, was investigated by electron spin resonance (ESR) spectroscopy. Free radicals were found to be the primary metabolites formed during both the reduction and oxidation of these compounds. Whereas the one-electron oxidation of nitrosonaphthols is enzymatic and catalyzed by the peroxidase prototype, horseradish peroxidase, their one-electron reduction by reducing cofactors such as NADH or NADPH was not enhanced by rat liver microsomal enzymes. The ESR spectra of the radicals found during the oxidation of nitrosonaphthols were analyzed and characterized as iminoxyl free radicals. The reduction pathway leads to nitroxide free radicals with unusually low nitrogen hyperfine constants.  相似文献   

18.
The ability of horseradish peroxidase (E.C. 1.11.1.7. Donor: H2O2 oxidoreductase) to catalytically oxidize 2-deoxyribose sugars to a free radical species was investigated. The ESR spin-trapping technique was used to denionstrate that free radical species were formed. Results with the spin trap 3.5-dibronio-4-nitrosoben-zene sulphonic acid showed that horseradish peroxidase can catalyse the oxidation of 2-deoxyribose to produce an ESR spectrum characteristic of a nitroxide radical spectrum. This spectrum was shown to be a composite of spin adducts resulting from two carbon-centered species, one spin adduct being characterized by the hyperfine coupling constants aN = 13.6GandaHβ = 11.0G, and the other by aN = 13.4G and aH = 5.8 G. When 2-deoxyribose-5-phosphate was used as the substrate, the spectrum produced was found to be primarily one species characterized by the hyperfine coupling constants aN = 13.4G and aH= 5.2. All the radical species produced were carbon-centered spin adducts with a β hydrogen, suggesting that oxidation occurred at the C(2) or C(5) moiety of the sugar. Interestingly, it was found that under the same experimental conditions, horseradish peroxidase apparently did not catalyze the oxidation of either 3-deoxyribose or D-ribose to a free radical since no spin adducts were found in these cases.

It can be readily seen that 2-deoxyribose and 2-deoxyribose-5-phosphate can be oxidized by HRP/H2O2 to form a free radical species that can be detected with the ESR spin-trapping technique. There are two probable sites for the formation of a CH type radical on the 2-deoxyribose sugar, these being the C(2) and the C(5) carbons. The fact that there is a species produced from 2-deoxy-ribose, but not 2-deoxy-ribose-5-phosphate, suggests that there is an involvement of the C(5) carbon in the species with the 1 1.0G β hydrogen. In the spectra formed from 2-deoxy-ribose, there is a big difference in the hyperfine splitting of the β hydrogens, suggesting that the radicals are formed at different carbon centers, while the addition of a phosphate group to the C(5) carbon seems to inhibit radical formation at one site. In related work, the chemiluminescence of monosaccharides in the presence of horseradish peroxidase was proposed to be the consequence of carbon-centered free radical formation (10).  相似文献   

19.
We optimized the conditions for oxidation of luminol by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3–8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM Tris solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

20.
Mechanism of horseradish peroxidase-catalyzed oxidation of malonaldehyde   总被引:1,自引:0,他引:1  
The mechanism of malonaldehyde oxidation by horseradish peroxidase in the presence of manganese(II) and acetate was investigated. Our results show that an apparent oxygenase behavior demonstrated by peroxidase in this system can be explained in terms of normal peroxidase activity. A free radical is generated from the reaction of malonaldehyde with compounds I and II of peroxidase; this radical is scavenged by dissolved molecular oxygen to give the appearance of peroxidase acting as an oxygenase. Oxygen consumption, absorbance spectra, and kinetic results show that the reaction is initiated by autoxidation of malonaldehyde to give a free radical. The radical reacts with oxygen and through the action of manganese(II), a peroxide is generated. This peroxide drives the peroxidase cycle to generate more free radicals which propagate the oxygen consumption reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号