首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gene encoding a novel mouse somatostatin receptor termed mSSTR3 was isolated and characterized. The sequence of mSSTR3 shows 46 and 47% identity with mSSTR1 and mSSTR2, respectively. mSSTR3 binds somatostatin-14 and somatostatin-28 with high affinity, but shows very low affinity for the somatostatin analogs MK-678 and SMS-201-995. In addition, mSSTR3 is coupled to pertussis toxin-sensitive G proteins and mediates somatostatin inhibition of forskolin-stimulated and dopamine D1 receptor-stimulated cAMP formation, indicating that it is coupled to adenylylcyclase. The pharmacological properties of mSSTR3 and its ability to couple with adenylylcyclase distinguish SSTR3 from the other cloned somatostatin receptors and indicates that it mediates biological functions different from SSTR1 or SSTR2. In situ hybridization indicates that SSTR3 mRNA is widely distributed in the mouse brain, and its expression in the nucleus of the lateral olfactory tract and in the piriform cortex, the primary olfactory cortex in the rodent brain, suggests that SSTR3 may participate in the processing and modulation of primary sensory information.  相似文献   

2.
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.  相似文献   

3.
The somatostatin receptor subtypes, sst1-sst5, bind their natural ligands, somatostatin-14, somatostatin-28 and cortistatin-17, with high affinity but do not much discriminate between them. Detailed understanding of the interactions between these receptors and their peptide ligands may facilitate the development of selective compounds which are needed to identify the biological functions of individual receptor subtypes. The influence of the amino-terminal domain and of the two putative N-linked glycosylation sites located in this region of rat sst3 was analysed. Biochemical studies in transfected cell lines suggested that the amino-terminus of sst3 is glycosylated at both sites. Mutation of the N-linked glycosylation site, Asn18Thr, had only a small effect on binding properties and inhibition of adenylyl cyclase. The double mutant Asn18Thr/Asn31Thr lacking both glycosylation sites showed a significant reduction in high affinity binding and inhibition of adenylyl cyclase while peptide selectivity was not affected. Truncation of the amino-terminal region by 32 amino acid residues including the two glycosylation sites caused similar but much stronger effects. Immunocytochemical analysis of receptor localisation revealed that the amino-terminal domain but not the carbohydrates appear to be involved in the transport of the receptor polypeptide to the cell surface.  相似文献   

4.
Abstract: Somatostatin (SRIF) induces its diverse physiological actions through interactions with different receptor subtypes. Multiple SRIF receptor subtypes have recently been cloned. To analyze the physical properties of receptor subtype SSTR2, two different peptide-directed antibodies were generated against SSTR2. Antibody “2e3,” directed against the peptide SSCTINWPGESGAWYT (residues 191–206), corresponding to a region in the predicted third extracellular domain of mouse SSTR2, and antibody “2i4,” directed against the peptide SGTEDGERSDS (residues 333–343) from the predicted cytoplasmic tail of mouse SSTR2, were developed. In Chinese hamster ovary (CHO) cells stably expressing the mouse SSTR2 gene (CHOB), the antibody 2e3 recognized specifically a protein of 93-kDa protein by immunoblotting. No specific immunoreactivity was detected by 2e3 in nontransfected CHO cells or CHO cells stably expressing vector alone or human SSTR1 or mouse SSTR3 genes. The antibody 2i4 specifically immunoprecipitated SSTR2 solubilized from CHOB cells that could be labeled with the SSTR2-specific ligand 125I-MK-678. Furthermore, both 2e3 and 2i4 specifically immunoprecipitated 93-kDa [35S]methionine-labeled proteins from CHOB cells, indicating that they recognize the same proteins. In contrast to studies in CHOB cells, immunoblotting studies showed that 2e3 detected specifically a single 148-kDa protein from different regions of the rat brain that have previously been shown to express high levels of SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. In contrast, no immunoreactivity was detected in rat kidney, liver, or lung, which do not express SSTR2. No 93-kDa protein was detected specifically in the rat brain. The 148-kDa protein detected by 2e3 is an SRIF receptor because 2e3 and 2i4 specifically immunoprecipitated solubilized rat brain SRIF receptors that could be reversibly labeled with 125I-MK-678. As in rat brain, 2e3 interacted specifically with a single 148-kDa protein in rat pituitary, in the rat pancreatic cell line AR42J, and in the HEK 293 cell line derived from human kidney, all of which express SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. These findings indicate that rat brain and pituitary, as well as a pancreatic and a kidney cell line, express primarily a form of SSTR2 different from CHOB cells. The multiple forms of SSTR2 may result from differential post-translational processing of SSTR2 because 2e3 immunoprecipitated 41-kDa in vitro translation products generated from mRNA extracted from CHOB and AR42J cells. This 41-kDa protein has the predicted size of unprocessed SSTR2. These results demonstrate that 2e3 and 2i4 antibodies interact specifically with SSTR2. Detection of two different size proteins by the SSTR2 peptide-directed antibodies suggests the existence of multiple forms of SSTR2.  相似文献   

5.
6.
Somatostatin receptor (SSTR) endocytosis influences cellular responsiveness to agonist stimulation and somatostatin receptor scintigraphy, a common diagnostic imaging technique. Recently, we have shown that SSTR1 is differentially regulated in the endocytic and recycling pathway of pancreatic cells after agonist stimulation. Additionally, SSTR1 accumulates and releases internalized somatostatin-14 (SST-14) as an intact and biologically active ligand. We also demonstrated that SSTR2A was sequestered into early endosomes, whereas internalized SST-14 was degraded by endosomal peptidases and not routed into lysosomal degradation. Here, we examined the fate of peptide agonists in rat insulinoma cells expressing SSTR3 by biochemical methods and confocal laser scanning microscopy. We found that [(125)I]Tyr11-SST-14 rapidly accumulated in intracellular vesicles, where it was degraded in an ammonium chloride-sensitive manner. In contrast, [(125)I]Tyr1-octreotide accumulated and was released as an intact peptide. Rhodamine-B-labeled SST-14, however, was rapidly internalized into endosome-like vesicles, and fluorescence signals colocalized with the lysosomal marker protein cathepsinD. Our data show that SST-14 was cointernalized with SSTR3, was uncoupled from the receptor, and was sorted into an endocytic degradation pathway, whereas octreotide was recycled as an intact peptide. Chronic stimulation of SSTR3 also induced time-dependent downregulation of the receptor. Thus, the intracellular processing of internalized SST-14 and the regulation of SSTR3 markedly differ from the events mediated by the other SSTR subtypes.  相似文献   

7.
Several recent studies suggest that G protein-coupled receptors can assemble as heterodimers or hetero-oligomers with enhanced functional activity. However, inactivation of a fully functional receptor by heterodimerization has not been documented. Here we show that the somatostatin receptor (sst) subtypes sst(2A) and sst(3) exist as homodimers at the plasma membrane when expressed in human embryonic kidney 293 cells. Moreover, in coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and sst(3). The sst(2A)-sst(3) heterodimer exhibited high affinity binding to somatostatin-14 and the sst(2)-selective ligand L-779,976 but not to the sst(3)-selective ligand L-796,778. Like the sst(2A) homodimer, the sst(2A)-sst(3) heterodimer stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding, inhibition of adenylyl cyclase, and activation of extracellular signal-regulated kinases after exposure to the sst(2)-selective ligand L-779,976. However, unlike the sst(3) homodimer, the sst(2A)-sst(3) heterodimer did not promote GTPgammaS binding, adenylyl cyclase inhibition, or extracellular signal-regulated kinase activation in the presence of the sst(3)-selective ligand L-796,778. Interestingly, during prolonged somatostatin-14 exposure, the sst(2A)-sst(3) heterodimer desensitized at a slower rate than the sst(2A) and sst(3) homodimers. Both sst(2A) and sst(3) homodimers underwent agonist-induced endocytosis in the presence of somatostatin-14. In contrast, the sst(2A)-sst(3) heterodimer separated at the plasma membrane, and only sst(2A) but not sst(3) underwent agonist-induced endocytosis after exposure to somatostatin-14. Together, heterodimerization of sst(2A) and sst(3) results in a new receptor with a pharmacological and functional profile resembling that of the sst(2A) receptor, however with a greater resistance to agonist-induced desensitization. Thus, inactivation of sst(3) receptor function by heterodimerization with sst(2A) or possibly other G protein-coupled receptors may explain some of the difficulties in detecting sst(3)-specific binding and signaling in mammalian tissues.  相似文献   

8.
9.
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.  相似文献   

10.
Abstract

The sub-family of dopamine D1-like receptors is now known to be comprised of at least two members: the originally cloned D1 receptor (herein referred to as the D1a receptor) and a related receptor referred to as the D1b, D1β or D5 dopamine receptor (herein referred to as the D1b/D5 receptor). Here, we characterize the D1b/D5 receptor expressed transiently in COS-7 cells and permanently in Ltk? cells.

Transiently expressed human D1b/D5 receptors bind the D1 specific ligand [125I]SCH 23982 saturably and with high affinity (KD = 500 pM). Competition for [125I]SCH 23982 binding to rat D1b/D5 and human D1a and D1b/D5 receptors supports the contention that the two D1b/D5 receptors are species homologues. Furthermore, in COS-7 cells, as previously observed, dopamine competes for the binding of [125I]SCH 23982 to human D1b/D5 receptors with a higher affinity than that seen at the human D1a receptor. These results are similar to those seen in Ltk? cells permanently transfected with the human D1b/D5 receptor. In these cells, dopamine competition for [125I]SCH 23982 binding is complex, sensitive to guanine nucleotides and of a higher affinity than that observed for dopamine binding to the human D1a receptor expressed in these same cells. In both D1a and D1b/D5 expressing Ltk? cells, dopamine stimulates adenylyl cyclase with an EC50 of = 200 nM. Furthermore, preincubation of Ltk? cells expressing the D1a and D1b/D5 receptors with dopamine results in desensitization of the response of adenylyl cyclase to subsequent agonist stimulation.  相似文献   

11.
Five somatostatin receptors (SSTRs) bind somatostatin-14 (S-14) and somatostatin-28 (S-28), but SSTR5 has the highest affinity for S-28. To determine whether S-28 acting through SSTR5 mediates inhibition of glucagon-like peptide-1 (GLP-1), fetal rat intestinal cell cultures were treated with somatostatin analogs with relatively high specificity for SSTRs 2-5. S-28 dose-dependently inhibited GLP-1 secretion stimulated by gastrin-releasing peptide more potently than S-14 (EC(50) 0.01 vs. 5.8 nM). GLP-1 secretion was inhibited by an SSTR5 analog, BIM-23268, more potently than S-14 and nearly as effectively as S-28. The SSTR5 analog L-372,588 also suppressed GLP-1 secretion equivalent to S-28, but a structurally similar peptide, L-362,855 (Tyr to Phe at position 7), was ineffective. An SSTR2-selective analog was less effective than S-28, and an SSTR3 analog was inactive. Separate treatment with GLP-1-(7-36)-NH(2) increased S-28 and S-14 secretion by three- and fivefold; BIM-23268 abolished S-28 without altering S-14, whereas the SSTR2 analog was inactive. The results indicate that somatostatin regulation of GLP-1 secretion occurs via S-28 through activation of SSTR5. GLP-1-stimulated S-28 secretion is also autoregulated by SSTR5 activation, suggesting a feedback loop between GLP-1 and S-28 modulated by SSTR5.  相似文献   

12.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Gao S  Oh YB  Shah A  Park WH  Kim SH 《Peptides》2011,32(6):1179-1186
Somatostatin is a cyclic-14 amino acid peptide which mainly distributed in digestive system and brain. Somatostatin receptor (SSTR) is a G-protein coupled receptor and all five SSTR subtypes are expressed in cardiomyocytes. The aim of this study was to investigate the effect of somatostatin on atrial natriuretic peptide (ANP) secretion and its signaling pathway. Somatostatin (0.01 and 0.1 nM) decreased ANP secretion in isolated beating rat atrium in a dose-dependent manner. But atrial contractility and translocation of extracellular fluid were not changed. Somatostatin-induced decrease in ANP secretion was significantly attenuated by the pretreatment with CYN 154806 (SSTR type 2 antagonist; 0.1 μM), but not by BIM 23056 (SSTR type 5 antagonist; 0.1 μM) and urantide (urotensin II receptor antagonist; 0.1 μM). When pretreated with an agonist for SSTR type 2 (Seglitide, 0.1 nM) and SSTR type 5 (L 817818, 0.1 nM), only Seglitide reduced ANP secretion similar to that of somatostatin. The suppressive effect of somatostatin on ANP secretion was attenuated by the pretreatment with an inhibitor for adenylyl cyclase (MDL-12330A, 5 μM) or protein kinase A (KT 5720, 0.1 μM). In diabetic rat atria, the suppressive effect of somatostatin on ANP secretion and concentration was attenuated. Real time-PCR and western blot shows the decreased level of SSTR type 2 mRNA and protein in diabetic rat atria. These data suggest that somatostatin decreased ANP secretion through SSTR type 2 and an attenuation of suppressive effect of somatostatin on ANP secretion in diabetic rat atria is due to a down-regulation of SSTR type 2.  相似文献   

14.
The potential involvement of somatostatin (SRIF) in testicular function was studied by using as a model primary cultures of purified immature porcine Sertoli cells. In the present report we show that Sertoli cells express mRNA for sst2 SRIF receptor and display SRIF-sensitive adenylyl cyclase. Sensitivity of adenylyl cyclase to SRIF and its analogues is compatible with the pharmacological profile of this receptor type. Relevant cAMP production is similarly inhibited by SRIF in both basal and stimulated (by gonadotropin FSH or by forskolin) conditions. Moreover, the observed SRIF actions on Sertoli cells require functional coupling of specific membrane receptors to adenylyl cyclase via Gi proteins because pertussis toxin prevents SRIF-dependent inhibition of adenylyl cyclase in either basal or FSH-stimulated conditions. Given the potent antiproliferative actions of SRIF in other cell types, we further assessed the possible SRIF-dependent modulation of [(3)H]thymidine incorporation by Sertoli cells. Our data point to SRIF-mediated inhibition of both basal and FSH-stimulated [(3)H]thymidine uptake. This inhibition of Sertoli cell proliferation is, at least in basal conditions, also blocked by pertussis toxin pretreatment. Altogether, these data suggest that SRIF may play a role as an (local) inhibitor of FSH actions in testicular development.  相似文献   

15.
The existence of receptor dimers has been proposed for several G protein-coupled receptors. However, the question of whether G protein-coupled receptor dimers are necessary for activating or modulating normal receptor function is unclear. We address this question with somatostatin receptors (SSTRs) of which there are five distinct subtypes. By using transfected mutant and wild type receptors, as well as endogenous receptors, we provide pharmacological, biochemical, and physical evidence, based on fluorescence resonance energy transfer analysis, that activation by ligand induces SSTR dimerization, both homo- and heterodimerization with other members of the SSTR family, and that dimerization alters the functional properties of the receptor such as ligand binding affinity and agonist-induced receptor internalization and up-regulation. Double label confocal fluorescence microscopy showed that when SSTR1 and SSTR5 subtypes were coexpressed in Chinese hamster ovary-K1 cells and treated with agonist they underwent internalization and were colocalized in cytoplasmic vesicles. SSTR5 formed heterodimers with SSTR1 but not with SSTR4 suggesting that heterodimerization is a specific process that is restricted to some but not all receptor subtype combinations. Direct protein interaction between different members of the SSTR subfamily defines a new level of molecular cross-talk between subtypes of the SSTR and possibly related receptor families.  相似文献   

16.
Neuropeptide somatostatin (SRIF) has been shown to modulate interleukin-2 (IL-2) secretion by mitogen-activated T cells. In this study, we further analyzed the transduction pathways underlying SRIF actions on human Jurkat T cells and compared SRIF signaling between nonactivated and mitogen-activated cells. SRIF effects on adenylyl cyclase activity in the absence and presence of mitogens were addressed by using three different analogs: SRIF14, SRIF28, and SMS 201-995. In semipurified membrane preparations obtained from nonactivated cells, all analogs inhibited adenylyl cyclase. However, in membrane preparations obtained from mitogen-activated cells, the maximal inhibition of adenylyl cyclase mediated by SRIF14 and SRIF28 equaled only one third of that measured in the absence of mitogens, whereas SMS 201-995 was completely inactive. To assess the relevant mechanisms associated with different effects of SRIF on adenylyl cyclase activity in nonactivated and mitogen-activated T cells, we performed binding assays by using iodinated SRIF as a radioligand. These experiments suggested that both the number of receptors and their affinities were almost identical in either nonactivated or activated cells. RT-PCR analysis of the pattern of SRIF receptor expression showed that nonactivated as well as activated Jurkat cells expressed only mRNA corresponding to the sst3 receptor subtype. Altogether, these data point to a functional activation-associated uncoupling of sst3 receptors from adenylyl cyclase in human T cells, indicating a T-cell activation-induced alteration in the sst3 receptor transduction pathway.  相似文献   

17.
The alpha-adrenergic receptors mediate the effects of epinephrine and norepinephrine on cellular signaling systems via guanine nucleotide binding regulatory proteins (G-proteins). Three alpha-adrenergic receptor subtypes have been cloned: the alpha 1, the alpha 2-C10, and the alpha 2-C4 adrenergic receptors. To investigate functional differences between the different subtypes, we assessed the ability of each to interact with adenylyl cyclase and polyphosphoinositide metabolism by permanently and transiently expressing the DNAs encoding the alpha 1, the alpha 2-C10, and the alpha 2-C4 adrenergic receptors in cells lacking endogenous alpha-adrenergic receptors. Both alpha 2-C10 and alpha 2-C4 couple primarily to inhibition of adenylyl cyclase and to a lesser extent to stimulation of polyphosphoinositide hydrolysis. alpha 2-C10 inhibits adenylyl cyclase more efficiently than alpha 2-C4. Effects of the alpha 2-adrenergic receptors on adenylyl cyclase inhibition and on polyphosphoinositide hydrolysis are both mediated by pertussis toxin-sensitive G-proteins. The major coupling system of the alpha 1-adrenergic receptor is activation of phospholipase C via a pertussis toxin-insensitive G-protein. alpha 1-Adrenergic receptor stimulation can also increase intracellular cAMP by a mechanism that does not involve direct activation of adenylyl cyclase. As with the muscarinic cholinergic receptor family our results show that each of the alpha-adrenergic receptor subtypes can couple to multiple signal transduction pathways and suggest several generalities about the effector coupling mechanisms of G-protein-coupled receptors.  相似文献   

18.
We have previously reported that the human somatostatin receptor type 1 (hSSTR1) stably expressed in Chinese hamster ovary-K1 cells does not internalize but instead up-regulates at the membrane during continued agonist treatment (1 microM somatostatin (SST)-14 x 22 h). Here we have investigated the molecular basis of hSSTR1 up-regulation. hSSTR1 was up-regulated by SST in a time-, temperature-, and dose-dependent manner to saturable levels, in intact cells but not in membrane preparations. Although hSSTR1 was acutely desensitized to adenylyl cyclase coupling after 1 h SST-14 treatment, continued agonist exposure (22 h) restored functional effector coupling. Up-regulation was unaffected by cycloheximide but blocked by okadaic acid. Confocal fluorescence immunocytochemistry of intact and permeabilized cells showed progressive, time-dependent increase in surface hSSTR1 labeling, associated with depletion of intracellular SSTR1 immunofluorescent vesicles. To investigate the structural domains of hSSTR1 responsible for up-regulation, we constructed C-tail deletion (Delta) mutants and chimeric hSSTR1-hSSTR5 receptors. Human SSTR5 was chosen because it internalizes readily, displays potent C-tail internalization signals, and does not up-regulate. Like wild type hSSTR1, Delta C-tail hSSTR1 did not internalize and additionally lost the ability to up-regulate. Swapping the C-tail of hSSTR1 with that of hSSTR5 induced internalization (27%) but not up-regulation. Substitution of hSSTR5 C-tail with that of hSSTR1 converted the chimeric receptor to one resembling wild type hSSTR1 (poor internalization, 71% up-regulation). These results show that ligand-induced up-regulation of hSSTR1 occurs by a temperature-dependent active process of receptor recruitment from a pre-existing cytoplasmic pool to the plasma membrane. It does not require new protein synthesis or signal transduction, is sensitive to dephosphorylation events, and critically dependent on molecular signals in the receptor C-tail.  相似文献   

19.
High affinity, subtype selective non-peptide agonists of somatostatin receptor subtypes 1-5 were identified in combinatorial libraries constructed based on molecular modeling of known peptide agonists. Simultaneous traditional chemical synthesis yielded an additional series of somatostatin subtype-2 receptor (SSTR2) selective agonists. These compounds have been used to further define the physiological functions of the individual somatostatin receptor subtypes. In vitro experiments demonstrated the role of the SSTR2 in inhibition of glucagon release from mouse pancreatic alpha-cells and the somatostatin subtype-5 receptor (SSTR5) as a mediator of insulin secretion from pancreatic beta-cells. Both SSTR2 and SSTR5 regulated growth hormone release from the rat anterior pituitary gland. In vivo studies performed with SSTR2 receptor selective compounds demonstrated effective inhibition of pulsatile growth hormone release in rats. The SSTR2 selective compounds also lowered plasma glucose levels in normal and diabetic animal models. The availability of high affinity, subtype selective non-peptide agonists for each of the somatostatin receptors provides a direct approach to defining their physiological function both peripherally and in the central nervous system.  相似文献   

20.
Human somatostatin receptor subtypes (SSTR1-5) bind their natural ligands SRIF-14 and SRIF-28 with high affinity. By contrast, short synthetic SRIF analogues such as SMS 201-995, a peptide agonist used for the treatment of various endocrine and malignant disorders, display sub-nanomolar affinity only for the receptor subtype SSTR2. To understand the molecular nature of selective peptide agonist binding to somatostatin receptors we have now, by site-directed mutagenesis, identified amino acids mediating SMS 201-995 specificity for SSTR2. Sequentially, amino acids in SSTR1, a receptor subtype exhibiting low affinity for SMS 201-995, were exchanged for the corresponding SSTR2 residues. After three consecutive steps, in which eight amino acids were exchanged, a SSTR1 mutant receptor with high affinity for SMS 201-995 was obtained. Receptor mutants with different combinations of these eight amino acids were then constructed. A single Ser305 to Phe mutation in TM VII increased the affinity of SSTR1 for SMS 201-995 nearly 100-fold. When this mutation was combined with an exchange of Gln291 to Asn in TM VI, almost full susceptibility to SMS 201-995 was obtained. Thus, it is concluded that the specificity of SMS 201-995 for SSTR2 is mainly defined by these two amino acids in transmembrane domains VI and VII. Using the conjugate gradient method we have, by analogy to the well established structure of bacteriorhodopsin, built a model for SRIF receptor-ligand interactions that explains the importance of Gln291 and Ser305 for the selectivity of agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号