首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angular disorder of weak-binding actomyosin cross-bridges.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

2.
Radial equilibrium lengths of actomyosin cross-bridges in muscle.   总被引:1,自引:1,他引:1       下载免费PDF全文
B Brenner  S Xu  J M Chalovich    L C Yu 《Biophysical journal》1996,71(5):2751-2758
Radial equilibrium lengths of the weakly attached, force-generating, and rigor cross-bridges are determined by recording their resistance to osmotic compression. Radial equilibrium length is the surface-to-surface distance between myosin and actin filaments at which attached cross-bridges are, on average, radially undistorted. We previously proposed that differences in the radial equilibrium length represent differences in the structure of the actomyosin cross-bridge. Until now the radial equilibrium length had only been determined for various strongly attached cross-bridge states and was found to be distinct for each state examined. In the present work, we demonstrate that weakly attached cross-bridges, in spite of their low affinity for actin, also exert elastic forces opposing osmotic compression, and they are characterized by a distinct radial equilibrium length (12.0 nm vs. 10.5 nm for force-generating and 13.0 nm for rigor cross-bridge). This suggests significant differences in the molecular structure of the attached cross-bridges under these conditions, e.g., differences in the shape of the myosin head or in the docking of the myosin to actin. Thus, the present finding supports our earlier conclusion that there is a structural change in the attached cross-bridge associated with the transition from a weakly bound configuration to the force-generating configuration. The implications for imposing spatial constraints on modeling actomyosin interaction in the filament lattice are discussed.  相似文献   

3.
Weakly attached cross-bridges in relaxed frog muscle fibers.   总被引:1,自引:1,他引:0       下载免费PDF全文
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges.  相似文献   

4.
M Xiao  J Borejdo 《Biophysical journal》1997,72(5):2268-2274
Cis-parinaric acid (PA) binds to a hydrophobic pocket formed between the heavy chain of myosin subfragment-1 (S1) and the 41-residue N-terminal of essential light chain 1 (A1). The binding is strong (Ka = 5.6 x 10(7) M-1) and rigid (polarization = 0.334). PA does not bind to myofibrils in which A1 has been extracted or replaced with alkali light chain 2 (A2). As in the case of S1 labeled with other probes, polarization of fluorescence of S1-PA added to myofibrils depended on fractional saturation of actin filament with S1, i.e., on whether the filaments were fully or partially saturated with myosin heads. Because fluorescence quantum yield of PA is enhanced manyfold upon binding, and because PA binds weakly to myofibrillar structures other then A1, the dye is a convenient probe of cross-bridge orientation in native muscle fibers. The polarization of a fiber irrigated with PA was equal to the polarization of S1-PA added to fibers at nonsaturating concentration. Cross-linking of S1 added to fibers at nonsaturating concentration showed that each S1 bound to two actin monomers of a thin filament. These results suggest that in rigor rabbit psoas muscle fiber each myosin cross-bridge binds to two actins.  相似文献   

5.
The ability to measure properties of a single cross-bridge in working muscle is important because it avoids averaging the signal from a large number of molecules and because it probes cross-bridges in their native crowded environment. Because the concentration of myosin in muscle is large, observing the kinetics of a single myosin molecule requires that the signal be collected from small volumes. The introduction of small observational volumes defined by diffraction-limited laser beams and confocal detection has made it possible to limit the observational volume to a femtoliter (10(-15) liter). By restraining labeling to 1 fluorophore per 100 myosin molecules, we were able to follow the kinetics of approximately 400 cross-bridges. To reduce this number further, we used two-photon (2P) microscopy. The focal plane in which the laser power density was high enough to produce 2P absorption was thinner than in confocal microscopy. Using 2P microscopy, we were able to observe approximately 200 cross-bridges during contraction. The novel method of confocal total internal reflection (CTIR) provides a method to reduce the observational volume even further, to approximately 1 attoliter (10(-18) liter), and to measure fluorescence with a high signal-to-noise (S/N) ratio. In this method, the observational volume is made shallow by illuminating the sample with an evanescent field produced by total internal reflection (TIR) of the incident laser beam. To guarantee the small lateral dimensions of the observational volume, a confocal aperture is inserted in the conjugate-image plane of the objective. With a 3.5-mum confocal aperture, we achieved a volume of 1.5 attoliter. Association-dissociation of the myosin head was probed with rhodamine attached at cys707 of the heavy chain of myosin. Signal was contributed by one to five fluorescent myosin molecules. Fluorescence decayed in a series of discrete steps, corresponding to bleaching of individual molecules of rhodamine. The S/N ratio was sufficiently large to make statistically significant comparisons from rigor and contracting myofibrils.  相似文献   

6.
In a relaxed muscle fiber at low ionic strength, the cross-bridges may well be in states comparable to the one that precedes the cross-bridge power stroke (Schoenberg, M. 1988. Adv. Exp. Med. Biol. 226:189-202). Using electron paramagnetic resonance (EPR) and (saturation transfer) electron paramagnetic resonance (ST-EPR) techniques on fibers labeled with maleimide spin label, under low ionic strength conditions designed to produce a majority of weakly-attached heads, we have established that (a) relaxed labeled fibers show a speed dependence of chord stiffness identical to that of unlabeled, relaxed fibers, suggesting similar rapid dissociation and reassociation of cross-bridges; (b) the attached relaxed heads at low ionic strength are nearly as disordered as in relaxation at physiological ionic strength where most of the heads are detached from actin; and (c) the microsecond rotational mobility of the relaxed heads was only slightly restricted compared to normal ionic strength, implying great motional freedom despite attachment. The differences in head mobility between low and normal ionic strength scale with filament overlap and are thus due to acto-myosin interactions. The spectra can be modeled in terms of two populations: one identical to relaxed heads at normal ionic strength (83%), the other representing a more oriented population of heads (17%). The spectrum of the latter is centered at approximately the same angle as the spectrum in rigor but exhibits larger (40 degrees) axial probe disorder with respect to the fiber axis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.  相似文献   

8.
When active insect fibrillar flight muscle is stretched, its ATPase rate increases and it develops "negative viscosity," which allows it to perform oscillatory work. We use a six-state model for the cross-bridge cycle to show that such "stretch activation" may arise naturally as a nonlinear property of a cross-bridge interacting with a single attachment site on a thin filament. Attachment is treated as a thermally activated process in which elastic energy must be supplied to stretch or compress the cross-bridge spring. We find that stretch activation occurs at filament displacements where, before the power stroke, the spring is initially in compression rather than in tension. In that case, pulling the filaments relieves the initial compression and reduces the elastic energy required for attachment. The result is that the attachment rate is enhanced by stretching. The model also displays the "delayed tension" effect observed in length-step experiments. When the muscle is stretched suddenly, the power stroke responds very quickly, but there is a time lag before dissociation at the end of the cycle catches up with the increased attachment rate. This lag is responsible for the delayed tension and hence also for the negative viscosity.  相似文献   

9.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

10.
Helical regions in many tetrapyrrole proteins are highly amphiphilic, one side interacting with a hydrophobic core and another side interacting with the polar solvent. The mean helical hydrophobic moment is a measure of amphiphilicity of a helix. Helical regions in myoglobin, the alpha and beta subunits of C-phycocyanin, and cytochrome c can be distinguished from nonhelical regions by use of a hydrophobic moment analysis. 24 of 27 (89%) of the helical regions in these proteins were located by this analysis. Calculations were also performed on chymotrypsin, ribonuclease, and papain, which do not possess as pronounced a hydrophobic core as the tetrapyrrole-containing proteins. Less than 50% of the helical regions were correctly located, indicating a lack of amphiphilicity in the helices of these proteins. The hydrophobic moment analysis was also used to predict helical regions in phytochrome, the ubiquitous photoreceptor in plants. Additionally, this analysis is used to quickly locate internal hydrophilic residues which may be functionally important. The distribution of hydrophobic moments from a random sequence was determined so that qualitative and to some extent quantitative comparisons between different amphiphilic helices may be made.  相似文献   

11.
We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor.  相似文献   

12.
In order to measure the cycling of a few ( approximately 6) myosin heads in contracting skeletal muscle, myofibrils were illuminated by Total Internal Reflection and observed through a confocal aperture. Myosin heads rotated at a rate approximately equal to the ATPase rate, suggesting that bulk ATPase of a whole muscle reflects the cycle frequency of individual heads.  相似文献   

13.
14.
When skeletal muscles are activated and mechanically shortened, the force that is produced by the muscle fibers decreases in two phases, marked by two changes in slope (P1 and P2) that happen at specific lengths (L1 and L2). We tested the hypothesis that these force transients are determined by the amount of myosin cross-bridges attached to actin and by changes in cross-bridge strain due to a changing fraction of cross-bridges in the pre-power-stroke state. Three separate experiments were performed, using skinned muscle fibers that were isolated and subsequently (i) activated at different Ca2+ concentrations (pCa2+ 4.5, 5.0, 5.5, 6.0) (n = 13), (ii) activated in the presence of blebbistatin (n = 16), and (iii) activated in the presence of blebbistatin at varying velocities (n = 5). In all experiments, a ramp shortening was imposed (amplitude 10%Lo, velocity 1 Lo•sarcomere length (SL)•s−1), from an initial SL of 2.5 µm (except by the third group, in which velocities ranged from 0.125 to 2.0 Lo•s−1). The values of P1, P2, L1, and L2 did not change with Ca2+ concentrations. Blebbistatin decreased P1, and it did not alter P2, L1, and L2. We developed a mathematical cross-bridge model comprising a load-dependent power-stroke transition and a pre-power-stroke cross-bridge state. The P1 and P2 critical points as well as the critical lengths L1 and L2 were explained qualitatively by the model, and the effects of blebbistatin inhibition on P1 were also predicted. Furthermore, the results of the model suggest that the mechanism by which blebbistatin inhibits force is by interfering with the closing of the myosin upper binding cleft, biasing cross-bridges into a pre-power-stroke state.  相似文献   

15.
The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.  相似文献   

16.
S Xu  S Malinchik  D Gilroy  T Kraft  B Brenner    L C Yu 《Biophysical journal》1997,73(5):2292-2303
X-ray diffraction patterns were obtained from skinned rabbit psoas muscle under relaxing and rigor conditions over a wide range of ionic strengths (50-170 mM) and temperatures (1 degree C-30 degrees C). For the first time, an intensification of the first actin-based layer line is observed in the relaxed muscle. The intensification, which increases with decreasing ionic strength at various temperatures, including 30 degrees C, parallels the formation of weakly attached cross-bridges in the relaxed muscle. However, the overall intensities of the actin-based layer lines are low. Furthermore, the level of diffuse scattering, presumably a measure of disorder among the cross-bridges, is little affected by changing ionic strength at a given temperature. The results suggest that the intensification of the first actin layer line is most likely due to the cross-bridges weakly bound to actin, and that the orientations of the weakly attached cross-bridges are hardly distinguishable from the detached cross-bridges. This suggests that the orientations of the weakly attached cross-bridges are not precisely defined with respect to the actin helix, i.e., nonstereospecific. Intensities of the myosin-based layer lines are only marginally affected by changing ionic strength, but markedly by temperature. The results could be explained if in a relaxed muscle the cross-bridges are distributed between a helically ordered and a disordered population with respect to myosin filament structure. Within the disordered population, some are weakly attached to actin and others are detached. The fraction of cross-bridges in the helically ordered assembly is primarily a function of temperature, while the distribution between the weakly attached and the detached within the disordered population is mainly affected by ionic strength. Some other notable features in the diffraction patterns include a approximately 1% decrease in the pitch of the myosin helix as the temperature is raised from 4 degrees C to 20 degrees C.  相似文献   

17.
The effect of [MgADP] on relaxation from isometric tension, initiated by reducing free [Ca2+] through photolysis of the caged photolabile Ca2+ chelator diazo-2, was determined at 20 degrees C in alpha-toxin permeabilized tonic (rabbit femoral artery, Rf) and phasic (rabbit bladder, Rb) smooth muscle. In Rf, the shape of the relaxation curve was clearly biphasic, consisting of a slow "plateau" phase followed by a monotonic exponential decline with rate constant k. The duration of the plateau (d = 44 +/- 4 s, mean +/- SEM, n = 28) was well correlated (R = 0.92) with the total t1/2 of relaxation that was 66 +/- 3 s (n = 28) in the presence of 20 mM creatine phosphate (CP), and was prolonged in the absence of CP (t1/2 = 83 +/- 3 s, n = 7); addition of 100 microM MgADP further slowed relaxation (t1/2 = 132 +/- 7 s, n = 14). In Rb, a plateau was not detectable and t1/2 (= 15 +/- 2 s, n = 6) was not affected by 100 microM MgADP. In Rf the Q10 between 20 degrees C and 30 degrees C was 4.3 +/- 0.4 for d-1 and 2.8 +/- 0.3 for k (n = 8; p = 0.006). The regulatory myosin light chain (MLC20) in Rf was dephosphorylated at 0.07 +/- 0.02 s-1, from 42 +/- 3% before to 20 +/- 2% after photolysis of diazo-2, reaching basal values at a time when force had fallen by only 40%. We conclude that, in the presence of ATP, as during rigor, the affinity of dephosphorylated cross-bridges for MgADP is significantly higher in tonic than in phasic smooth muscle and contributes to the maintenance of force at low levels of phosphorylation. The MgADP dependence of the post-dephosphorylation phase of relaxation is consistent with its being rate-limited by the slow off-rate of ADP from cross-bridges that were dephosphorylated while in force-generating ADP-bound (AM*D) cross-bridge states. The fourfold faster off-rate of ADP from AM*D in the phasic, Rb, compared to tonic, Rf, smooth muscle is a major determinant of the different kinetics of relaxation in the two types of smooth muscle.  相似文献   

18.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

19.
Isometric skinned muscle fibers were activated by the photogeneration of a substoichiometric amount of ATP and their cross-bridge configurations examined during the development of the rigor force by x-ray diffraction and electron microscopy. By the photogeneration of approximately 100 microM ATP, approximately 2/3 of the concentration of the myosin heads in a muscle fiber, muscle fibers originally in the rigor state showed a transient drop of the force and then produced a long-lasting rigor force (approximately 50% of the maximal active force), which gradually recovered to the original force level with a time constant of approximately 4 s. Associated with the photoactivation, muscle fibers revealed small but distinct changes in the equatorial x-ray diffraction that run ahead of the development of force. After reaching a plateau of force, long-lasting intensity changes in the x-ray diffraction pattern developed in parallel with the force decline. Two-dimensional x-ray diffraction patterns and electron micrographs of the sectioned muscle fibers taken during the period of 1-1.9 s after the photoactivation were basically similar to those from rigor preparations but also contained features characteristic of fully activated fibers. In photoactivated muscle fibers, some cross-bridges bound photogenerated ATP and underwent an ATP hydrolysis cycle whereas a significant population of the cross-bridges remained attached to the thin actin filaments with no available ATP to bind. Analysis of the results obtained indicates that, during the ATP hydrolysis reaction, the cross-bridges detached from actin filaments and reattached either to the same original actin monomers or to neighboring actin monomers. The latter cross-bridges contribute to produce the rigor force by interacting with the actin filaments, first producing the active force and then being locked in a noncycling state(s), transforming their configuration on the actin filaments to stably sustain the produced force as a passive rigor force.  相似文献   

20.
Yagi N  Iwamoto H  Inoue K 《Biophysical journal》2006,91(11):4110-4120
Structural changes in the myosin cross-bridges were studied by small-angle x-ray diffraction at a time resolution of 0.53 ms. A frog sartorius muscle, which was electrically stimulated to induce isometric contraction, was released by approximately 1% in 1 ms, and then its length was decreased to allow steady shortening with tension of approximately 30% of the isometric level. Intensity of all reflections reached a constant level in 5-8 ms. Intensity of the 7.2-nm meridional reflection and the (1,0) sampling spot of the 14.5-nm layer line increased after the initial release but returned to the isometric level during steady shortening. The 21.5-nm meridional reflection showed fast and slow components of intensity increase. The intensity of the 10.3-nm layer line, which arises from myosin heads attached to actin, decreased to a steady level in 2 ms, whereas other reflections took longer, 5-20 ms. The results show that myosin heads adapt quickly to an altered level of tension, and that there is a distinct structural state just after a quick release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号