首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In vitro methods provide opportunities for propagating and preserving endangered plant species when seed-based methods are not adequate. Such species include those that produce few or no seeds, as well as species with recalcitrant seeds. Tissue culture propagation methods can be used to produce such plants for reintroduction, research, education, display, and commerce. They can also be the basis for tissue banking as a way to preserve genetic diversity when seeds cannot be banked. With some recalcitrant species, embryo banking, a method which also utilizes in vitro culture for recovery germination, is possible. The number of endangered species that will require in vitro methods is estimated to be at least 5,000 worldwide. Further information is needed to identify these species, and the ongoing collection of information into databases on endangered species and recalcitrant species will help provide this. The costs of these methods are higher than for traditional propagation and preservation, but they may be necessary for species under higher threat. The multiplication rate of a culture, as well as the rates of rooting and acclimatization, has a major effect on the number of transfers needed for producing plants or tissue for banking, and improvements that will increase the efficiency of these steps can help lower costs. Further research into factors affecting the growth of tissues in vitro, as well as coordination of efforts among institutions with infrastructure for in vitro work, should facilitate the application of in vitro methods to the endangered species that cannot be propagated or preserved using seeds.  相似文献   

2.
The latest IUCN statistics show that of over 12,000 plant species, 70% are threatened, 19% are critically endangered and 28 species are extinct in the wild. Target 8 of the Global Strategy for Plant Conservation (GSPC) highlights the importance of ex situ conservation of critically endangered plants. Long-term germplasm storage for species with recalcitrant seeds needs alternative measures. In vitro methods complement seed banking and other ex situ measures and are vital for long-term conservation. Conservation Biotechnology at RBG Kew is currently working on a number of rare and threatened recalcitrant species from biodiversity-rich areas of the world to develop good quality in vitro propagules for cryopreservation, recovery and restoration projects. The importance of successful in vitro propagation methods, transplantation technologies, cryopreservation and international networking for the integrated conservation of these species are discussed in detail.  相似文献   

3.
The importance of in vitro tools to complement other ex situ methods for saving plants from extinction is more relevant than ever before. More than 50% of the world’s plant species are endemic to the 34 global biodiversity hotspots (GBHs), each holding at least 1,500 endemic plant species. In addition, a large number of small islands hold a number of endemic species on the brink of extinction. Conservation support concentrating more on these hotspots and small islands would significantly reduce the loss of species that is currently occurring. In the majority of these cases, the resources are either locally scarce or difficult to access for in vitro conservation to support other ex situ measures. Most island countries are small, and their geographical position is a stumbling block to initiate active partnerships with other countries when they need to use in vitro tools to rescue plants that produce recalcitrant seeds/spores or propagate only by vegetative means. However, many biodiversity hotspot countries have facilities and expertise, and they concentrate on their own flora for in vitro conservation programmes. For decades, because of the grave threat these plants face, the Conservation Biotechnology Unit, previously known as the Micropropagation Unit, at Royal Botanic Gardens Kew (RBG Kew) has been at the forefront of assisting countries to save their valuable biodiversity through both in situ and ex situ methods. Approaches mentioned here highlight work on recalcitrant ferns from GBHs and small islands. Source materials from recalcitrant species, either spore or seed and in some cases vegetative material, need to be used immediately after collection for tangible results in vitro. This becomes more difficult when only a few plants or small populations are left in the wild. The task becomes harder when available material is small in quantity, and there is greater restriction on the use of available genetic diversity in the wild. This paper highlights the importance of proper collection measures, in vitro culture procedures and cryopreservation and methods for the integrated conservation of threatened ferns from both GBHs and small islands. The importance of international networking to achieve these conservation goals also will be discussed.  相似文献   

4.
In vitro techniques are very useful for conserving plant biodiversity, including (a) genetic resources of recalcitrant seed and vegetatively propagated species, (b) rare and endangered plant species and (c) biotechnology products such as elite genotypes and genetically engineered material. Explants from recalcitrant seed and vegetatively propagated species can be efficiently collected under field conditions using in vitro techniques. In vitro culture techniques ensure the production and rapid multiplication of disease-free material. Medium-term conservation is achieved by reducing growth of plant material, thus increasing intervals between subcultures. For long-term conservation, cryopreservation (liquid nitrogen, −196°C) allows storing plant material without modification or alteration for extended periods, protected from contaminations and with limited maintenance. Slow growth storage protocols are routinely employed for a large number of species, including numerous endangered plants, from temperate and tropical origin. Cryopreservation is well advanced for vegetatively propagated species, and techniques are ready for large-scale experimentation in an increasing number of cases. Research is much less advanced for recalcitrant species due to their seed characteristics, viz., very high sensitivity to desiccation, structural complexity and heterogeneity in terms of developmental stage and water content at maturity. However, various technical approaches should be explored to develop cryopreservation techniques for a larger number of recalcitrant seed species. A range of analytical techniques are available, which allow understanding physical and biological processes taking place in explants during cryopreservation. These techniques are extremely useful to assist in the development of cryopreservation protocols. In comparison with crop species, only limited research has been performed on cryopreservation of rare and endangered species. Even though routine use of cryopreservation is still limited, an increasing number of examples where cryopreservation is used on a large scale can be found both in genebanks for crops and in botanical gardens for endangered species.  相似文献   

5.
Conservation In vitro of threatened plants—Progress in the past decade   总被引:1,自引:0,他引:1  
Summary In vitro techniques have found increasing use in the conservation of threatened plants in recent years and this trend is likely to continue as more species face risk of extinction. The Micropropagation Unit at Royal Botanic Gardens, Kew, UK (RBG Kew) has an extensive collection of in vitro plants including many threatened species from throughout the world. The long history of the unit and the range of plants cultured have enabled considerable expertise to be amassed in identifying the problems and developing experimental strategies for propagation and conservation of threatened plants. While a large body of knowledge is available on the in vitro culture of plants, there are limited publications relating to threatened plant conservation. This review highlights the progress in in vitro culture and conservation of threatened plants in the past decade (1995–2005) and suggests future research directions. Works on non-threatened plants are also included wherever methods have applications in rare plant conservation. Recalcitrant plant materials collected from the wild or ex situ collections are difficult to grow in culture. Different methods of sterilization and other treatments to establish clean material for culture initiation are reviewed. Application of different culture methods for multiplication, and use of unconventional materials for rooting and transplantation are reviewed. As the available plant material for culture initiation is scarce and in many cases associated with inherent problems such as low viability and endogenous contamination, reliable protocols on multiplication, rooting, and storage methods are very important. In this context, photoautotrophic micropropagation has the potential for development as a routine method for the in vitro conservation of endangered plants. Long-term storage of material in culture is challenging and the potential applications of cryopreservation are significant in this area. Future conservation biotechnology research and its applications must be aimed at conserving highly threatened, mainly endemic, plants from conservation hotspots.  相似文献   

6.
Somatic embryogenesis is an in vitro clonal propagation method with potential to contribute to the improvement of cacao varieties. Before using this technology for commercial production, it is essential that somatic embryogenesis-derived plants be tested in field conditions. Therefore, we established a field test at Union Vale Estate, Saint Lucia. Thirty- to 50-yr-old trees were selected for clonal propagation as potentially high yielding based on local farmers observations. Clonal plants were propagated in vitro from immature flowers by embryogenesis and micropropagation. Multiple plants from nine genotypes were acclimated to greenhouse conditions then returned to Saint Lucia and planted in a field. Orthotropic rooted cuttings and locally propagated open pollinated seedlings were also planted for a total of 214 trees. Growth data were collected every 4–6 mo. including: stem diameter, stem height, length of the longest jorquette branch, number of jorquette branches, and dates of first flowering and fruiting. At 4.5 yr after planting in the field there were no major differences in all growth parameters among the propagation methods evaluated with exception of the orthotropic rooted cuttings. Trees grown from seeds were slightly taller then trees propagated by the other methods. Trees propagated as orthotropic rooted cuttings exhibited smaller average stem diameters, shorter stem heights to the jorquette, and shorter jorquette branches. We concluded that somatic embryo-derived plants demonstrated normal phenotypes in field conditions and have growth parameters similar to plants propagated by traditional methods.  相似文献   

7.
The Balkan Botanic Garden of Kroussia (BBGK) is dedicated to the ex situ conservation of native plants of Greece and the Balkans. The BBGK has formulated a conservation strategy for the collection of wild plant material for propagation, prioritizing mainly the endemic, rare, endangered, threatened and vulnerable plants of Europe found in different regions of Greece. Its aim is to contribute to the implementation of Target 8 of the Global and European Strategies for Plant Conservation at local, regional and international scales. In order to (i) define the ecological profile of the in situ requirements preferred and/or tolerated by each selected species, (ii) develop rapid and effective species-specific propagation protocols, and (iii) improve the cultivation of species of conservation concern in BBGK’s nurseries and ex situ conservation sections, geographical coordinates and in situ collection data obtained for each taxon were imported into a Geographic Information System environment (GIS). This information was then linked with several digital GIS thematic layers, including topographic, geological, edaphic, climatic, precipitation and temperature data derived from digital databases. Based on this approach, sexual and asexual propagation of plants from the Ionian Islands were conducted and rapid and effective baseline protocols were developed for 29 taxa (species and subspecies); four are presented here in detail and species-specific ex situ propagation and cultivation guidelines are given. Most of the taxa originating from the Ionian Islands were propagated by cuttings (55.2%) or seeds (34.5%), while the rest were propagated by root division at a rate from 1.7 to 2. The first round of propagation achieved a success rate ranging from 15 to 50% for 3 taxa, from 60 to 80% for 8 taxa and from more than 80 to 100% for 16 taxa, while the ex situ cultivation of the wild and propagated plant material has, so far, been successful. The application of GIS exemplified here presents a sensible and invaluable tool with a broad-scale potential in enhancing the prospects of the ex situ conservation of priority species collected from diverse environmental conditions in man-made habitats such as botanic gardens.  相似文献   

8.
Climate change, alien species, and use of land for intensive farming and development are causing severe threat to the plant genetic diversity worldwide. Hence, conservation of biodiversity is considered fundamental and also provides the livelihoods to millions of people worldwide. Medicinal plants play a key role in the treatment of a number of diseases, and they are only the source of medicine for majority of people in the developing world. The tropical regions of the world supply the bulk of current global demand for “natural medicine,” albeit with increasing threat to populations in the world and its genetic diversity. India is a major center of origin and diversity of crop and medicinal plants. India poses out 20,000 species of higher plants, one third of it being endemic and 500 species are categorized to have medicinal value. The Western Ghats is one of the major repositories of medicinal plants. It harbors around 4,000 species of higher plants of which 450 species are threatened. Currently, the number of species added to the red list category in this region is increasing, and the valuable genetic resources are being lost at a rapid rate. Demand for medicinal plants is increasing, and this leads to unscrupulous collection from the wild and adulteration of supplies. Providing high-quality planting material for sustainable use and thereby saving the genetic diversity of plants in the wild is important. During the last 25 years of intensive research, Tropical Botanic Garden and Research Institute has developed in vitro protocol for rapid regeneration and establishment of about 40 medicinally important rare and threatened plants of Western Ghats. In situ conservation alone would not be effective in safeguarding these important species. Thus, utilizing the biotechnoligical approach to complement ex situ conservation program is becoming vital. Propagating biotechnology tools in plant conservation program is a prerequisite to succeed in sustainable use and to complement the existing ex situ measures. In addition to propagation, storage of these valuable genetic resources is equally important. In vitro slow growth of 35 species and cryopreservation using embryo/meristem/seed in 20 different species of rare medicinal plants of this region is accomplished. Plants developed in vitro of ten medicinal plants, which have restricted distribution, were reintroduced in the natural habitat as well.  相似文献   

9.
Daucus carota subsp. halophilus, is a wild crop relative of domestic carrot. It is an aromatic plant widely used in folk medicine due to recognized therapeutic properties of its essential oils. Experiments were carried out to evaluate the potential of in vitro propagation techniques to the conservation of this endemic and endangered taxon. The results showed that shoot tips of in vitro germinated seeds were able to proliferate in the presence of benzyladenine, with the best results being achieved using 4.4 μM, both in the first and second cultures. Shoots rooted after being transferred to 1/2-Murashige and Skoog basal medium. The results indicated that the concentration of benzyladenine used during the multiplication phase did not interfere with the rate of root formation. The obtained plantlets were morphologically and anatomically identical to those obtained by seeds. Some of the in vitro produced shoots developed flowers that produced viable pollen. Plant regeneration was also achieved by somatic embryogenesis induction in cotyledons and root segments cultured in the presence of 4.5 μM 2,4-dichlorophenoxyacetic acid. Somatic embryos converted into plantlets in a medium without growth regulators. Plants obtained either by shoot proliferation or somatic embryogenesis were acclimatized and are now growing at the Coimbra Botanical Garden. The first attempts to reintroduce these plants in the original habitat were successful. It can be concluded that the protocols developed are a useful approach to the conservation of this endemic species.  相似文献   

10.
Spanish territories contain many of the hot spots of plant biodiversity among European countries. Most of the Spanish territory is found in the Mediterranean basin and in the Canary Islands, a region of great floral singularity and diversity (Macaronesian bioregion). Therefore, an important effort must be made to contribute to its conservation. Several strategies can be considered, but seed conservation under standard conditions is the most resource-efficient method. However, the application of this methodology is not always possible for recalcitrant seeds or species for which vegetative propagation is necessary or convenient under some circumstances. Micropropagation is one of the measures suggested for preserving endangered species. During the 1990s, several in vitro culture protocols for Spanish endemics were established. The main purpose of this strategy was to obtain a considerable number of individuals to reduce the loss of natural populations. Likewise, diverse slow growth protocols were developed for this material. However, these efforts usually did not lead to the establishment of in vitro collections. The advantages and disadvantages of the in vitro conservation strategy will be reviewed for some cases. The establishment of the in vitro protocols together with the development of cryopreservation techniques created the ideal conditions to generate cryogenic collections. In this paper, we review the knowledge and experience accumulated during the last decades in micropropagation, slow growth, and cryopreservation for Spanish plant wild species. Their application in the development ex situ collections and their contribution toward an integrated system to conserve threatened species will be discussed.  相似文献   

11.
Malaysia is fortunate and proud to contain some of the world’s richest biodiversity. In Malaysia, there are an estimated 185,000 species of fauna and 12,500 species of flowering plants, many of which are endemic to tropical forests in this region. Indeed, such diversity is an important and invaluable national asset to safeguard both present and future generations. In vitro conservation offers possible techniques for the preservation of plant germplasm that at present is difficult to maintain or is maintained with limited success. Research at the Universiti Kebangsaan Malaysia (The National University of Malaysia) focuses on the cryopreservation of woody fruit species with seeds that cannot tolerate cryopreservation (recalcitrant or intermediate). Among the plants with recalcitrant seeds are such traditionally important edible tropical fruits as mangosteen, langsat, and rambai (Garcinia mangostana, Lansium domesticum, and Baccaurea motleyana). Citrus aurantifolia, Citrus suhuiensis, Citrus madurensis, Citrus hystrix, and Fortunella polyandra are among the Citrus and Citrus-related species studied. Cryopreservation studies include the Nepenthes species (pitcher plants) of Malaysia. Fundamental research on desiccation and low-temperature tolerance and on the physiology of desiccation are used to understand seed behavior, a prerequisite for the development of successful conservation techniques. At the same time, cryopreservation protocols for several Citrus and forestry species were developed for embryonic axes and adventitious shoots, mainly using rapid dehydration and PVS2 vitrification techniques. There are no successful standard techniques or protocols for species with highly recalcitrant seeds such as Garcinia species. Modification of existing protocols or development of new methods is required, but this can be accomplished only when a detailed understanding of the recalcitrant nature of the seeds or explants is achieved. While we have considerable knowledge concerning the basics of biochemical processes and some molecular data from work on desiccation-tolerant seeds, a great need remains for understanding the cause of the recalcitrance or desiccation sensitivity of these seeds. It may be necessary to use a systems biology approach that exploits the “omics” technologies to generate global molecular data. In combination with bioinformatics for data integration and analyses, this approach would move toward improved modeling of the biological pathways associated with the development of recalcitrant seeds.  相似文献   

12.
Using micropropagation through tissue culture has become the most used approach worldwide for mass production for the conservation of endangered species. However, the screening of somaclonal variations generated using in vitro culture is usually restricted to the first generation of micropropagated plants, when they have not yet been released in the field. Accordingly, the fate of genetically modified regenerants after sexual reproduction is usually not assessed and changes in the genetic structures of species are unknown. In this work, we assess the cytogenetic stability of two rDNA gene families in the offspring of experimental crosses between accessions generated after in vitro culture and wild individuals of Cistus heterophyllus (Cistaceae). The cytogenetic rDNA profiles (45S rDNA, 5S rDNA) of 118 accessions including wild and in vitro micropropagated individuals and bi‐directional artificial crosses between wild and in vitro‐generated plants were assessed by fluorescence in situ hybridization (FISH) and Ag‐NOR staining. Plants regenerated by micropropagation showed a lower size of the FISH signals in a 45S rDNA site, but this condition was not present in the wild accessions. Three new cytogenetic and cytological variants were present in 36% of the experimental progeny, involving the amplification of one additional 45S rDNA site and the presence of heteromorphic nucleoli. rDNA‐based genomic instability was present after sexual reproduction between wild and in vitro‐generated plants. The results of this study discourage the use of micropropagated materials for plant conservation unless comprehensive surveys of the genetic integrity and stability of the regenerants are performed after crossing between wild and micropropagated plants.  相似文献   

13.
Plant cryopreservation: Progress and prospects   总被引:9,自引:0,他引:9  
Summary Cryopreservation (liquid nitrogen, −196°C) represents the only safe and cost-effective option for long-term conservation of germplasm of non-orthodox seed species, vegetatively propagated species, and of biotechnology products. Classical cryopreservation techniques, which are based on freeze-induced dehydration, are mainly employed for freezing undifferentiated cultures and apices of cold-tolerant species. New cryopreservation techniques, which are based on vitrification of internal solutes, are successfully employed with all explant types, including cells suspensions and calluses, apices, and somatic and zygotic embryos of temperate and tropical species. The development of cryopreservation protocols is significantly more advanced for vegetatively propagated species than for recalcitrant seed species. Even though its routine use is still limited, there are a growing number of examples where cryopreservation is employed on a large scale for different types of materials, including seeds with orthodox and intermediate storage behaviour, dormant buds, pollen, biotechnology products, and apices sampled from in vitro plantlets of vegetatively propagated species. Cryopreservation can also be employed for uses other than germplasm conservation, such as cryoselection, i.e., the selection through freezing of samples with special properties, or cryotherapy, i.e., the elimination of viruses from infected plants through apex cryopreservation. Because of its high potential, it is expected that cryopreservation will become more frequently employed for long-term conservation of plant genetic resources.  相似文献   

14.
The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2‐year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3‐year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2‐year or in vitro propagated 3‐year plants. 2‐Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13‐dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of Amontana giving higher content of lactones.  相似文献   

15.
The demand for perennial nonfood crops, such as miscanthus, is increasing steadily, as fossil resources are replaced by biomass. However, as the establishment of miscanthus is very expensive, its cultivation area in Europe is still small. The most common propagation method for miscanthus is via rhizomes, the harvesting of which is very labour‐intensive. Seed propagation is promising, but not suitable for sterile genotypes. In this study, a new vegetative propagation method, ‘collar propagation’, was tested in field and controlled environment studies. Collars are built at the junction between rhizome and stem. They can be harvested in a less destructive way than rhizomes by pulling out the stems from winter‐dormant miscanthus plants. One genotype of each of the species M. sacchariflorus, M. × giganteus, M. sinensis in combination with three fragment types (collars, rhizomes, collars + rhizomes) were tested for establishment success and plant performance. The performance (e.g. dry matter yield) of collar‐propagated plants was either better than or not significantly different from rhizome‐propagated plants. Pregrown plantlets transplanted into the field showed no significant differences in establishment success between the fragments within a genotype. When directly planted into the field however, the fragment ‘rhizome+collar’ had a significantly better establishment success than the other two. The winter survival rate of the fragment ‘rhizome+collar’ was 70% for M. sacchariflorus and 75% for M. × giganteus. Emergence success from collar‐derived plants was not affected by harvest date (harvested monthly from November to February). This study showed that miscanthus propagation via collars is feasible and a promising alternative to rhizome propagation, as the multiplication rate of collars is comparable to that of rhizome propagation. Collar propagation is the more suitable method for the tested genotypes of the species M. sachariflorus and M. × giganteus, but not for M. sinensis genotypes, which may be better propagated by seeds.  相似文献   

16.
Most commercially grown cacti can be easily propagated by seed and/or cuttings. A group of rare and endangered species does not fit into this category and is therefore a good candidate for in vitro propagation productions as a tool to overcome habitat and plant-destruction. The number of rare and endangered species of Cacti goes into about 100. Many show a low production and germination of seeds and plantlets are prone to damping-off, making the in vitro propagation a feasible alternative for the multiplication and conservation of their germplasm. The aim of the present investigation is to establish a protocol for the in vitro culture and plant regeneration of Notocactus magnificus, the blue cactus, a highly ornamental species, native to Brazil. The surface sterilization of the explants was achieved with immersion for 10 min in sodium hypochlorite solution for either seeds (0.25% v/v) or ribs segments (1% v/v). Callus formation was observed when explants were cultured on MS medium supplemented with sucrose at 2% (w/v), 2,4-dichlorophenoxyacetic acid 0.5 μM, benzylaminopurine 4.4 μM, thiamine HCl 0.4 mg l−1 and i-inositol 100 mg l−1. The regeneration of shoots was carried out on MS medium supplemented with either different concentrations of benzylaminopurine and 1-naphthaleneacetic acid, or kinetin and indole-3-acetic acid. The highest number of shoots occurred when MS medium was supplemented with benzylaminopurine 22.2 μM, sucrose 3% (w/v) and agar 0,6% (w/v). In vitro spontaneous rooting of shoots was observed after eight months under culture on MS medium. Only in vitro rooted shoots developed into normal plants under glasshouse culture conditions. This in vitro protocol should be useful for the conservation as well as mass propagation of Notocactus magnificus.  相似文献   

17.
Variability of the in vitro organogenic response from leaf explants of a seed population of Cueumis melo L. ev. Cantaloupe Charentais was analyzed to detect genotypic variability among individual seeds for shoot regeneration. Variation in shoot regeneration frequency among plants from different seeds was compared to that found among clonal replicas of each original plant. Clonal propagation was performed using in vitro culture of apical and axillary buds of axenic plants to avoid somaclonal variation. Results demonstrate the existence of highly significant differences among plants from the seed population. Regeneration frequency of leaf explants derived from clonally propagated sets of a single plant can be described by a binomial distribution for each original plant coming from one seed. Using data from stochastic simulation, we studied the accuracy of different analyses to detect the presence of genotypic heterogeneity in a population. These analyses, together with our experimental design, allowed the separation of genotypes differing up to 5% in their regeneration ability. Results of this work should allow researchers to hypothesize about those genotypes that differ within a population and their frequency.Abbreviations IAA indole-3-acetic acid - K (Kinetin) 6-furfuryl-aminopurine  相似文献   

18.
Centaurea cineraria subsp. circae is an endemic plant with a distribution area limited to Circeo mountain (Lazio, Italy), whose population was estimated in a very low number of individuals. The aim of this work was to investigate ex situ conservation strategies such as achene collection and in vitro plant propagation, which will permit to carry out restoration programmes. The test carried out on the achenes demonstrated that only 5.5% of them were morphologically healthy. Seed germination tests showed that seeds do not display dormancy and that germination does not require pre-treatments. The higher germination rate (67.5%) was observed under a photoperiod of 12/12 h (light/dark) and temperature regime +20/+10°C. The in vitro studies demonstrated that micropropagation, acclimatization and the transfer outdoors of C. cineraria subsp. circae are not particularly difficult: 74% of shoot explants in a Murashige and Skoog (MS) medium added with 0.5 mg/l benzylaminopurine and 2 mg/l kinetin formed multiple shoots; 100% of shoots rooted in the MS medium added with 0.5 mg/l indole-3-butyric acid and over 90% survived the acclimatization phase. After been transferred outdoors, the totality of in vitro-propagated plants bloomed and appeared morphologically indistinguishable from wild plants. Preliminary chemical analyses showed a similar profile for in vitro-propagated and wild plants.  相似文献   

19.
Summary The genus Acacia comprises many species which are important for firewood. fodder, tannin, pulpwood, shelterbelts, and soil improvement. Species of Acacia are dispersed widely in tropical and subtropical regions of Australia. South America, Asia, and Africa. In the past, the majority of forest trees have been propagated through the traditional family forestry method, where trees are grown from seeds and propagated sexually. Clonal propagation through tissue culture offers an alternative to vegetative practices and has the potential to provide high multiplication rates of uniform genotypes, resulting in short-term gains. Extensive in vitro research and success have been achieved for a number of forest trees, including the Pinus, Eucalyptus, and Acacia species. Acacia mearnsii is fast becoming one of the most important trees in South African forestry. For this reason it is important to employ biotechnology to enable the industry to compete in the international market. However, for these procedures to be commercially viable, the post-culture performance in the field must be improved because the initial financial outlay is high. This review provides an overview on in vitro work done on the Acacia species.  相似文献   

20.
The use of in vitro techniques for conservation has been rising steadily since their inclusion in The Convention on Biological Diversity and The Global Strategy for Plant Conservation. Unfortunately, bryophytes are often overlooked in conservation initiatives, but they are important in a number of large-scale ecosystem processes, i.e. nutrient, water and carbon cycling. There is a long history of the use of tissue culture in cultivating bryophytes, and many species respond well to in vitro techniques. For 6 yr (2000–2006), The Royal Botanic Gardens, Kew and the UK statutory conservation agencies supported a project for the ex situ conservation of bryophytes. Living and cryopreserved collections of UK threatened species were successfully established and the cryopreserved collection continues to be maintained. Other in vitro conservation collections are maintained over Europe, at botanic gardens, museums and by individual university researchers, but there is no coherent European collection of bryophytes for conservation, or standardisation of techniques. A major issue for many in vitro collections is the maintenance of within species genetic diversity. Such diversity is considered to be important, as it is the basis by which populations of species can adapt to new conditions and evolve. We are proposing to establish a European network for in vitro conservation of bryophytes. We envisage that this will include living collections, cryopreserved collections and spore collections. Conservation of genetic diversity would be a priority and the collections would provide a valuable resource for conservation initiatives and support research into rare and threatened species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号