首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
9-(2-Anthryl)-nonanoic acid is a new photoactivatable fluorescent probe which has been designed for the study of the lateral diffusion and distribution of lipids in biological membranes by means of the anthracene photodimerization reaction. This anthracene fatty acid can be incorporated metabolically into the glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol) of Chinese hamster ovary (CHO) cells in culture. The diffusion coefficient of intrinsic lipids in the plasma membrane of these eukaryotic cells can thus be measured using the fluorescence recovery after a photobleaching technique, since illumination of the fluorescent anthracene groups yields non-fluorescent photodimers. For the sake of comparison, the extrinsic lipophilic probes 5-(N-hexadecanoyl)-aminofluorescein, 12-(9-anthroyloxy)-stearic acid, 9-(2-anthryl)-nonanoic acid and a synthetic anthracene-phosphatidylcholine were also used to label the plasma membrane of CHO cells. The diffusion coefficients for the extrinsic and intrinsic probes ranged over 1 - 2 x 10(-9) cm2/s. Small but significant differences were observed between the various probes reflecting differences they exhibit in size and polarity. All the extrinsic probes were free to diffuse, with a mobile fraction close to 100%. In contrast, a fractional recovery of only 75% was observed for the intrinsic anthracene-labelled phospholipids, suggesting that the anthracene fatty acid was metabolically incorporated into membrane lipid regions which were inaccessible to the extrinsic probes.  相似文献   

2.
A new photo cross-linking method has been developed for the study of the lateral distribution of lipids in natural membranes, which uses anthracene as a photoactivable group. This method, which rests on the potentiality of anthracene to form covalently bound dimers upon irradiation around 340-380 nm has been applied to the membrane lipids (dimannosyl diacylglycerol, phosphatidylglycerol, phosphatidylinositol) of the bacterium Micrococcus luteus. These glyco- and phospholipids were anthracene labelled by metabolically incorporating the synthetic 9-(2-anthryl)nonanoic acid. The following sequential procedure was used: dimerization of the anthracene-labelled lipids in the membrane by irradiation of the intact cells at 360 nm; extraction of the lipids and thin-layer chromatography in the first dimension to separate the various lipid dimers from the monomers; partial dedimerization of the lipid dimers by illumination of the chromatogram at around 250-280 nm; chromatography in the second dimension to separate the native lipid monomers from the corresponding residual lipid dimers. On account of the occurrence of the 3 hetero dimers phosphatidylglycerol-dimannosyl diacylglycerol, phosphatidylinositol-dimannosyl diacylglycerol and phosphatidylglycerol-phosphatidylinositol after irradiating the cells, it is concluded that in this bacterial membrane, dimannosyl diacylglycerol, phosphatidylglycerol and phosphatidylinositol are homogeneously distributed.  相似文献   

3.
The asymmetric transverse distribution of phospholipids in the human erythrocyte membrane can be explained by differences between the rate constants of flip and flop motion of the lipids. A selective interaction between aminophospholipids and spectrin does not need to be assumed for creating and maintaining the asymmetric localization of these lipids. Shape transformation of red cells could be caused by alterations of the flip-flop rate constants leading to a change of the lipid distribution and, consequently, to a differential area expansion of the outer and inner membrane leaflet.  相似文献   

4.
The glycerophospholipids phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin (CL) are major structural components of bacterial membranes. In some bacteria, phosphatidylcholine or phosphatidylinositol and its derivatives form part of the membrane. PG or CL can be modified with the amino acid residues lysine, alanine, or arginine. Diacylglycerol is the lipid anchor from which syntheses of phosphorus-free glycerolipids, such as glycolipids, sulfolipids, or homoserine-derived lipids initiate. Many membrane lipids are subject to turnover and some of them are recycled. Other lipids associated with the membrane include isoprenoids and their derivatives such as hopanoids. Ornithine-containing lipids are widespread in Bacteria but absent in Archaea and Eukarya. Some lipids are probably associated exclusively with the outer membrane of many bacteria, i.e. lipopolysaccharides, sphingolipids, or sulfonolipids. For certain specialized membrane functions, specific lipid structures might be required. Upon cyst formation in Azotobacter vinelandii, phenolic lipids are accumulated in the membrane. Anammox bacteria contain ladderane lipids in the membrane surrounding the anammoxosome organelle, presumably to impede the passage of highly toxic compounds generated during the anammox reaction. Considering that present knowledge on bacterial lipids was obtained from only a few bacterial species, we are probably only starting to unravel the full scale of lipid diversity in bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

5.
Outer-membrane proteases T (OmpT) are important defence molecules of Gram-negative bacteria such as Escherichia coli found in particular in clinical isolates. We studied the interaction of OmpT with the membrane-forming lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) from the inner leaflet and lipopolysaccharide (LPS) from the outer leaflet of the outer membrane. These investigations comprise functional aspects of the protein–lipid interaction mimicking the outer-membrane system as well as the bioactivity of LPS:OmpT complexes in the infected host after release from the bacterial surface. The molecular interaction of the lipids PE, PG, and LPS with OmpT was investigated by analysing molecular groups in the lipids originating from the apolar region (methylene groups), the interface region (ester), and the polar region (phosphates), and by analysing the acyl-chain melting-phase behaviour of the lipids. The activity of OmpT and LPS:OmpT complexes was investigated in biological test systems (human mononuclear cells and Limulus amoebocyte lysate assay) and with phospholipid model membranes. The results show a strong influence of OmpT on the mobility of the lipids leading to a considerable fluidization of the acyl chains of the phospholipids as well as LPS, and a rigidification of the phospholipid, but not LPS head groups. From this, a dominant role of the protein on the function of the outer membrane can be deduced. OmpT released from the outer membrane still contains slight contaminations of LPS, but its strong cytokine-inducing ability in mononuclear cells, which does not depend on the Toll-like receptors 2 and 4, indicates an LPS-independent mechanism of cell activation. This might be of general importance for infections induced by Gram-negative bacteria.  相似文献   

6.
Transbilayer distribution of phospholipids in bacteriophage membranes   总被引:1,自引:0,他引:1  
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A(2). We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

7.
Aminoacyl‐phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala‐PG and a novel alanylated lipid, Alanyl‐diacylglycerol (Ala‐DAG). Ala‐DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala‐PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.  相似文献   

8.
The bacterial cell membrane accomplishes the controlled exchange of molecules with the extracellular space and mediates specific interactions with the environment. However, the cytoplasmic membrane also includes vulnerable targets for antimicrobial agents. A common feature of cationic antimicrobial peptides (CAMPs) produced by other bacteria or by the host immune system is to utilize the negative charge of bacterial phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) for initial adherence and subsequent penetration into the membrane bilayer. To resist cationic antimicrobials many bacteria integrate positive charges into the membrane surface. This is accomplished by aminoacylation of negatively charged (PG) or (CL) with alanine, arginine, or lysine residues. The Multiple Peptide Resistance Factor (MprF) of Staphylococcus aureus is the prototype of a highly conserved protein family of aminoacyl phosphatidylglycerol synthases (aaPGSs) which modify PG or CL with amino acids. MprF is an oligomerizing membrane protein responsible for both, synthesis of lysyl phosphatidylglycerol (LysPG) in the inner leaflet of the cytoplasmic membrane and translocation of LysPG to the outer leaflet. This review focuses on occurrence, synthesis and function of bacterial aminoacyl phospholipids (aaPLs) and on the role of such lipids in basic cellular processes and pathogenicity. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

9.
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.  相似文献   

10.
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.  相似文献   

11.
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A2. We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

12.
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non‐vesicular routes, with members of the oxysterol‐binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4‐ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS‐specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.   相似文献   

13.
Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids.  相似文献   

14.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

15.
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

16.
Cell membranes have complex lipid compositions, including an asymmetric distribution of phospholipids between the opposing leaflets of the bilayer. Although it has been demonstrated that the lipid composition of the outer leaflet of the plasma membrane is sufficient for the formation of raft-like liquid-ordered (l(o)) phase domains, the influence that such domains may have on the lipids and proteins of the inner leaflet remains unknown. We used tethered polymer supports and a combined Langmuir-Blodgett/vesicle fusion (LB/VF) technique to build asymmetric planar bilayers that mimic plasma membrane asymmetry in many ways. We show that directly supported LB monolayers containing cholesterol-rich l(o) phases are inherently unstable when exposed to water or vesicle suspensions. However, tethering the LB monolayer to the solid support with the lipid-anchored polymer 1,2-dimyristoyl phophatidylethanolamine-N-[poly(ethylene glycol)-triethoxysilane] significantly improves stability and allows for the formation of complex planar-supported bilayers that retain >90% asymmetry for 1-2 h. We developed a single molecule tracking (SPT) system for the study of lipid diffusion in asymmetric bilayers with coexisting liquid phases. SPT allowed us to study in detail the diffusion of individual lipids inside, outside, or directly opposed to l(o) phase domains. We show here that l(o) phase domains in one monolayer of an asymmetric bilayer do not induce the formation of domains in the opposite leaflet when this leaflet is composed of palmitoyl-oleoyl phosphatidylcholine and cholesterol but do induce domains when this leaflet is composed of porcine brain phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and cholesterol. The diffusion of lipids is similar in l(o) and liquid-disordered phase domains and is not affected by transbilayer coupling, indicating that lateral and transverse lipid interactions that give rise to the domain structure are weak in the biological lipid mixtures that were employed in this work.  相似文献   

17.
The epidermal growth factor (EGF) receptor partitions into lipid rafts made using a detergent-free method, but is extracted from low density fractions by Triton X-100. By screening several detergents, we identified Brij 98 as a detergent in which the EGF receptor is retained in detergent-resistant membrane fractions. To identify the difference in lipid composition between those rafts that harbored the EGF receptor (detergent-free and Brij 98-resistant) and those that did not (Triton X-100-resistant), we used multidimensional electrospray ionization mass spectrometry to perform a lipidomics study on these three raft preparations. Although all three raft preparations were similarly enriched in cholesterol, the EGF receptor-containing rafts contained more ethanolamine glycerophospholipids and less sphingomyelin than did the non-EGF receptor-containing Triton X-100 rafts. As a result, the detergent-free and Brij 98-resistant rafts exhibited a balance of inner and outer leaflet lipids, whereas the Triton X-100 rafts contained a preponderance of outer leaflet lipids. Furthermore, in all raft preparations, the outer leaflet phospholipid species were significantly different from those in the bulk membrane, whereas the inner leaflet lipids were quite similar to those found in the bulk membrane. These findings indicate that the EGF receptor is retained only in rafts that exhibit a lipid distribution compatible with a bilayer structure and that the selection of phospholipids for inclusion into rafts occurs mainly on the outer leaflet lipids.  相似文献   

18.
Eukaryotic membrane proteins generally reside in membrane bilayers that have lipid asymmetry. However, in vitro studies of the impact of lipids upon membrane proteins are generally carried out in model membrane vesicles that lack lipid asymmetry. Our recently developed method to prepare lipid vesicles with asymmetry similar to that in plasma membranes and with controlled amounts of cholesterol was used to investigate the influence of lipid composition and lipid asymmetry upon the conformational behavior of the pore-forming, cholesterol-dependent cytolysin perfringolysin O (PFO). PFO conformational behavior in asymmetric vesicles was found to be distinct both from that in symmetric vesicles with the same lipid composition as the asymmetric vesicles and from that in vesicles containing either only the inner leaflet lipids from the asymmetric vesicles or only the outer leaflet lipids from the asymmetric vesicles. The presence of phosphatidylcholine in the outer leaflet increased the cholesterol concentration required to induce PFO binding, whereas phosphatidylethanolamine and phosphatidylserine in the inner leaflet of asymmetric vesicles stabilized the formation of a novel deeply inserted conformation that does not form pores, even though it contains transmembrane segments. This conformation may represent an important intermediate stage in PFO pore formation. These studies show that lipid asymmetry can strongly influence the behavior of membrane-inserted proteins.  相似文献   

19.
The transbilayer movement of fluorescent and isotopically labeled analogs of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) from the outer to the inner leaflet (flip) and from the inner to the outer leaflet (flop) of human red blood cells (RBC) was examined. The inward movement of 1-oleoyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole-aminocaproyl)- (C6-NBD-), 1-oleoyl-2-(N-(3-(3-[125I]iodo-4-hydroxyphenyl)propionyl)aminocaproyl)- (C6-125I-), or 1-oleoyl-2-(N-(3-3-[125I]iodo-4-azido-phenyl)propionyl)aminocaproyl- (C6-125I-N3-) analogs of PC and PE were relatively slow. In contrast, all analogs of PS and PE analogs containing aminododecanoic acid (C12 lipids) were rapidly transported to the cell's inner leaflet. Analysis of 125I-N3 lipids cross-linked to membrane proteins revealed labeling of 32-kDa Rh polypeptides that was dependent on the lipid's capacity to be transported to the inner leaflet but was independent of lipid species. To investigate whether lipids could also be transported from the inner to the outer leaflet, lipid probes residing exclusively in the inner leaflet were monitored for their appearance in the outer leaflet. Lipid movement could not be detected at 0 degrees C. At 37 degrees C, however, approximately 70% of the PC, 40% of the PE, and 15% of the PS redistributed to the cells outer leaflet, thereby attaining their normal asymmetric distribution. Continuous incubation in the presence of bovine serum albumin depleted the cells of the analogs (t1/2 approximately 1.5 h) in a manner that was independent of lipid species. Similar to the inward movement of aminophospholipids, the outward movement of PC, PE, and PS was ATP-dependent and could be blocked by oxidation of membrane sulfhydryls and by the histidine reagent bromophenacyl bromide. Evidence is presented which suggests that the outward movement of lipids is an intrinsic property of the cells unrelated to compensatory mechanisms due to an imbalance in lipid distribution.  相似文献   

20.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号