首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Energetically competent binary recognition of the cofactor S-adenosyl-L-methionine (AdoMet) and the product S-adenosyl-L-homocysteine (AdoHcy) by the DNA (cytosine C-5) methyltransferase (M.HhaI) is demonstrated herein. Titration calorimetry reveals a dual mode, involving a primary dominant exothermic reaction followed by a weaker endothermic one, for the recognition of AdoMet and AdoHcy by M.HhaI. Conservation of the bimodal recognition in W41I and W41Y mutants of M.HhaI excludes the cation-pi interaction between the methylsulfonium group of AdoMet and the pi face of the Trp(41) indole ring from a role in its origin. Small magnitude of temperature-independent heat capacity changes upon AdoMet or AdoHcy binding by M.HhaI preclude appreciable conformational alterations in the reacting species. Coupled osmotic-calorimetric analyses of AdoMet and AdoHcy binding by M.HhaI indicate that a net uptake of nearly eight and 10 water molecules, respectively, assists their primary recognition. A change in water activity at constant temperature and pH is sufficient to engender and conserve enthalpy-entropy compensation, consistent with a true osmotic effect. The results implicate solvent reorganization in providing the major contribution to the origin of this isoequilibrium phenomenon in AdoMet and AdoHcy recognition by M.HhaI. The observations provide unequivocal evidence for the binding of AdoMet as well as AdoHcy to M.HhaI in solution state. Isotope partitioning analysis and preincubation studies favor a random mechanism for M.HhaI-catalyzed reaction. Taken together, the results clearly resolve the issue of cofactor recognition by free M.HhaI, specifically in the absence of DNA, leading to the formation of an energetically and catalytically competent binary complex.  相似文献   

2.
DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-L-homocysteine (AdoHcy). The turnover rate (k cat) of M.HhaI, and the other two cytosine-5 MTases examined, is limited by a step subsequent to methyl transfer; however, no such step has so far been identified. To elucidate the role of cofactor interactions during catalysis, eight mutants of Trp41, which is located in the cofactor binding pocket, were constructed and characterized. The mutants show full proficiency in DNA binding and base-flipping, and little variation is observed in the apparent methyl transfer rate k chem as determined by rapid-quench experiments using immobilized fluorescent-labeled DNA. However, the Trp41 replacements with short side chains substantially perturb cofactor binding (100-fold higher K(AdoMet)D and K(AdoMet)M) leading to a faster turnover of the enzyme (10-fold higher k cat). Our analysis indicates that the rate-limiting breakdown of a long-lived ternary product complex is initiated by the dissociation of AdoHcy or the opening of the catalytic loop in the enzyme.  相似文献   

3.
Ten M.HhaI residues were replaced with alanine to probe the importance of distal protein elements to substrate/cofactor binding, methyl transfer, and product release. The substitutions, ranging from 6-20 A from the active site were evaluated by thermodynamic analysis, pre-steady and steady-state kinetics, to obtain Kd(AdoMet), Kd(DNA), kcat/Km(DNA), kcat, and kmethyltransfer values. For the wild-type M.HhaI, product release steps dominate catalytic turnover while the 4-fold faster internal microscopic constant kmethyltransfer presents an upper limit. The methyl transfer reaction has DeltaH and DeltaS values of 10.3 kcal/mol and -29.4 cal/(mol K), respectively, consistent with a compressed transition state similar to that observed in the gas phase. Although the ten mutants remained largely unperturbed in methyl transfer, long-range effects influencing substrate/cofactor binding and product release were observed. Positive enhancements were seen in Asp73Ala, which showed a 25-fold improvement in AdoMet affinity and in Val282Ala, which showed a 4-fold improvement in catalytic turnover. Based on an analysis of the positional probability within the C5-cytosine DNA methyltransferase family we propose that certain conserved distal residues may be important in mediating long-range effects.  相似文献   

4.
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.  相似文献   

5.
We have determined a structure for a complex formed between HhaI methyltransferase (M.HhaI) and S-adenosyl-L-methionine (AdoMet) in the presence of a non-specific short oligonucleotide. M.HhaI binds to the non-specific short oligonucleotides in solution. Although no DNA is incorporated in the crystal, AdoMet binds in a primed orientation, identical with that observed in the ternary complex of the enzyme, cognate DNA, and AdoMet or S-adenosyl-L-homocysteine (AdoHcy). This orientation differs from the previously observed unprimed orientation in the M.HhaI-AdoMet binary complex, where the S+-CH3 unit of AdoMet is protected by a favorable cation-pi interaction with Trp41. The structure suggests that the presence of DNA can guide AdoMet into the primed orientation. These results shed new light on the proposed ordered mechanism of binding and explains the stable association between AdoMet and M.HhaI.  相似文献   

6.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   

7.
DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet (Som, S., and Friedman, S. (1990) J. Biol. Chem. 265, 4278-4283). The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase.  相似文献   

8.
The BcgI restriction-modification system consists of two subunits, A and B. It is a bifunctional protein complex which can cleave or methylate DNA. The regulation of these competing activities is determined by the DNA substrates and cofactors. BcgI is an active endonuclease and a poor methyltransferase on unmodified DNA substrates. In contrast, BcgI is an active methyltransferase and an inactive endonuclease on hemimethylated DNA substrates. The cleavage and methylation reactions share cofactors. While BcgI requires Mg2+and S -adenosyl methionine (AdoMet) for DNA cleavage, its methylation reaction requires only AdoMet and yet is significantly stimulated by Mg2+. Site-directed mutagenesis was carried out to investigate the relationship between AdoMet binding and BcgI DNA cleavage/methylation activities. Most substitutions of conserved residues forming the AdoMet binding pocket in the A subunit abolished both methylation and cleavage activities, indicating that AdoMet binding is an early common step required for both cleavage and methylation. However, one mutation (Y439A) abolished only the methylation activity, not the DNA cleavage activity. This mutant protein was purified and its methylation, cleavage and AdoMet binding activities were tested in vitro . BcgI-Y439A had no detectable methylation activity, but it retained 40% of the AdoMet binding and DNA cleavage activities.  相似文献   

9.
Pre-steady state partitioning analysis of the HhaI DNA methyltransferase directly demonstrates the catalytic competence of the enzyme.DNA complex and the lack of catalytic competence of the enzyme.S-adenosyl-L-methionine (AdoMet) complex. The enzyme.AdoMet complex does form, albeit with a 50-fold decrease in affinity compared with the ternary enzyme.AdoMet.DNA complex. These findings reconcile the distinct binding orientations previously observed within the binary enzyme.AdoMet and ternary enzyme. S-adenosyl-L-homocysteine.DNA crystal structures. The affinity of the enzyme for DNA is increased 900-fold in the presence of its cofactor, and the preference for hemimethylated DNA is increased to 12-fold over unmethylated DNA. We suggest that this preference is partially due to the energetic cost of retaining a cavity in place of the 5-methyl moiety in the ternary complex with the unmethylated DNA, as revealed by the corresponding crystal structures. The hemi- and unmethylated substrates alter the fates and lifetimes of discrete enzyme.substrate intermediates during the catalytic cycle. Hemimethylated substrates partition toward product formation versus dissociation significantly more than unmethylated substrates. The mammalian DNA cytosine-C-5 methyltransferase Dnmt1 shows an even more pronounced partitioning toward product formation.  相似文献   

10.
DNA adenine methyltransferase (Dam methylase) has been crosslinked with its cofactor S-adenosyl methionine (AdoMet) by UV irradiation. About 3% of the enzyme was radioactively labelled after the crosslinking reaction performed either with (methyl-3H)-AdoMet or with (carboxy-14C)-AdoMet. Radiolabelled peptides were purified after trypsinolysis by high performance liquid chromatography in two steps. They could not be sequenced due to radiolysis. Therefore we performed the same experiment using non-radioactive AdoMet and were able to identify the peptide modified by the crosslinking reaction by comparison of the separation profiles obtained from two analytical control experiments performed with 3H-AdoMet and Dam methylase without crosslink, respectively. This approach was possible due to the high reproducibility of the chromatography profiles. In these three experiments only one radioactively labelled peptide was present in the tryptic digestions of the crosslinked enzyme. Its sequence was found to be XA-GGK, corresponding to amino acids 10-14 of Dam methylase. The non-identified amino acid in the first sequence cycle should be a tryptophan, which is presumably modified by the crosslinking reaction. The importance of this region near the N-terminus for the structure and function of the enzyme was also demonstrated by proteolysis and site-directed mutagenesis experiments.  相似文献   

11.
Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. The evolutionarily conserved SET domain occurs in most proteins known to possess histone lysine methyltransferase activity. We present here the crystal structure of a large fragment of human SET7/9 that contains a N-terminal beta-sheet domain as well as the conserved SET domain. Mutagenesis identifies two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3. Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate.  相似文献   

12.
N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.  相似文献   

13.
Mutations in the gene encoding for a de novo methyltransferase, DNMT3B, lead to an autosomal recessive Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome. To analyse the protein structure and consequences of ICF-causing mutations, we modelled the structure of the DNMT3B methyltransferase domain based on Haemophilus haemolyticus protein in complex with the cofactor AdoMet and the target DNA sequence. The structural model has a two-subdomain fold where the DNA-binding region is situated between the subdomains on a surface cleft having positive electrostatic potential. The smaller subdomains of the methyltransferases differ in length and sequences and therefore only the target recognition domain loop was modelled to show the location of an ICF-causing mutation. Based on the model, the DNMT3B recognizes the GC sequence and flips the cytosine from the double-stranded DNA to the catalytic pocket. The amino acids in the cofactor and target cytosine binding sites and also the electrostatic properties of the binding pockets are conserved. In addition, a registry of all known ICF-causing mutations, DNMT3Bbase, was constructed. The structural principles of the pathogenic mutations based on the modelled structure and the analysis of chi angle rotation changes of mutated side chains are discussed.  相似文献   

14.
Sterol methyltransferase (SMT), the enzyme from Saccharomyces cerevisiae that catalyzes the conversion of sterol acceptor in the presence of AdoMet to C-24 methylated sterol and AdoHcy, was analyzed for amino acid residues that contribute to C-methylation activity. Site-directed mutagenesis of nine aspartate or glutamate residues and four histidine residues to leucine (amino acids highly conserved in 16 different species) and expression of the resulting mutant proteins in Escherichia coli revealed that residues at H90, Asp125, Asp152, Glu195, and Asp276 are essential for catalytic activity. Each of the catalytically impaired mutants bound sterol, AdoMet, and 25-azalanosterol, a high energy intermediate analogue inhibitor of C-methylation activity. Changes in equilibrium binding and kinetic properties of the mutant enzymes indicated that residues required for catalytic activity are also involved in inhibitor binding. Analysis of the pH dependence of log kcat/Km for the wild-type SMT indicated a pH optimum for activity between 6 and 9. These results and data showing that only the mutant H90L binds sterol, AdoMet, and inhibitor to similar levels as the wild-type enzyme suggest that H90 may act as an acceptor in the coupled methylation-deprotonation reaction. Circular dichroism spectra and chromatographic information of the wild-type and mutant enzymes confirmed retention of the overall conformation of the enzyme during the various experiments. Taken together, our studies suggest that the SMT active center is composed of a set of acidic amino acids at positions 125, 152, 195, and 276, which contribute to initial binding of sterol and AdoMet and that the H90 residue functions subsequently in the reaction progress to promote product formation.  相似文献   

15.
Zhou H  Shatz W  Purdy MM  Fera N  Dahlquist FW  Reich NO 《Biochemistry》2007,46(24):7261-7268
The bacterial DNA cytosine methyltransferase M.HhaI sequence-specifically modifies DNA in an S-adenosylmethionine dependent reaction. The enzyme stabilizes the target cytosine (GCGC) into an extrahelical position, with a concomitant large movement of an active site loop involving residues 80-99. We used multidimensional, transverse relaxation-optimized NMR experiments to assign nearly 80% of all residues in the cofactor-bound enzyme form, providing a basis for detailed structural and dynamical characterization. We examined details of the previously unknown effects of the cofactor binding with M.HhaI in solution. Addition of the cofactor results in numerous structural changes throughout the protein, including those decorating the cofactor binding site, and distal residues more than 30 A away. The active site loop is involved in motions both on a picosecond to nanosecond time scale and on a microsecond to millisecond time scale and is not significantly affected by cofactor binding except for a few N-terminal residues. The cofactor also affects residues near the DNA binding cleft, suggesting a role for the cofactor in regulating DNA interactions. The allosteric properties we observed appear to be closely related to the significant amount of dynamics and dynamical changes in response to ligand binding detected in the protein.  相似文献   

16.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

17.
S Friedman  S Som    L F Yang 《Nucleic acids research》1991,19(19):5403-5408
Binding of the EcoRII DNA methyltransferase to azacytosine-containing DNA protects the enzyme from digestion by proteases. The limit digest yields a product having a Mr on SDS-PAGE 20% less than the intact protein. The N terminus of the tryptic digestion product was sequenced and found to be missing the N terminal 82 amino acids. Under the conditions used unbound enzyme was digested to small peptides. Protection of the enzyme from protease digestion implies that the enzyme undergoes major conformational changes when bound to DNA. The trypsin sensitive region of the EcoRII methyltransferase occurs prior to the first constant region shared with other procaryotic DNA(cytosine-5)methyltransferases. To determine if this region played a role in substrate binding or specificity, N-terminal deletion mutants were studied. Deletion of 97 amino acids resulted in a decrease of enzyme activity. Further deletions caused a complete loss of activity. Enzyme deleted through amino acid 85 was purified and found to have the same specificity as wild type however there was an increase in Km for both S-adenosylmethionine (AdoMet) and DNA of 27 and 18 fold respectively. The N-terminus of the EcoRII methylase, although a variable region present in many procaryotic DNA(cytosine-5)methylases, plays no role in determining enzyme specificity, although it does contribute to the interaction with both AdoMet and DNA.  相似文献   

18.
A mutant HpaII methyltransferase functions as a mutator enzyme.   总被引:4,自引:0,他引:4       下载免费PDF全文
DNA (cytosine-5)-methyltransferases can cause deamination of cytosine when the cofactor S-adenosylmethionine (AdoMet) is limiting and thus function as sequence-specific C-->U mutator enzymes. Here we explored whether mutations causing inactivation of the cofactor binding activity of the HpaII methyltransferase, thus mimicking conditions of limiting AdoMet concentration, could convert a DNA methyltransferase to a C-->U mutator enzyme. We created two mutator enzymes from the HpaII methyltransferase (F38S and G40D) which both showed enhanced cytosine deamination activities in vitro and in vivo. Interestingly, the G:U mispairs generated by these enzymes were not repaired completely in bacteria equipped with uracil-DNA glycosylase-initiated repair machinery, giving rise to a potent mutator phenotype. This is the first report showing the creation of mutator enzymes from a DNA methyltransferase and the demonstration of their mutagenicity in living cells.  相似文献   

19.
DNA methylation is involved in epigenetic control of numerous cellular processes in eukaryotes, however, many mechanistic aspects of this phenomenon are not yet understood. A bacterial prototype cytosine-C5 methyltransferase, M.HhaI, serves as a paradigm system for structural and mechanistic studies of biological DNA methylation, but further analysis of the 37 kDa protein is hampered by its insufficient solubility (0.15 mM). To overcome this problem, three hydrophobic patches on the surface of M.HhaI that are not involved in substrate interactions were subjected to site-specific mutagenesis. Residues M51 or V213 were substituted by polar amino acids of a similar size, and/or the C-terminal tetrapeptide FKPY was replaced by a single glycine residue (Delta324G). Two out of six mutants, delta324G and V213S/delta324G, showed improved solubility in initial analyses and were purified to homogeneity using a newly developed procedure. Biochemical studies of the engineered methyltransferases showed that the deletion mutant delta324G retained identical DNA binding, base flipping and catalytic properties as the wild-type enzyme. In contrast, the engineered enzyme showed (i) a significantly increased solubility (>0.35 mM), (ii) high-quality 2D-[(15)N,(1)H] TROSY NMR spectra, and (iii) (15)N spin relaxation times evidencing the presence of a monomeric well-folded protein in solution.  相似文献   

20.
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号