首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells. Type II cell proliferation after lung injury from 85% oxygen is regulated, in part, by a fall in lung PTHrP. In this study, we investigated lung PTHrP after injury induced by >95% oxygen in rats and rabbits. In adult rats, lung PTHrP rose 10-fold over controls to 6,356 +/- 710 pg/ml (mean +/- SE) at 48 h of hyperoxia. Levels fell to 299 +/- 78 pg/ml, and staining for PTHrP mRNA was greatly reduced at 60 h (P < 0.05), the point of most severe injury and greatest pneumocyte proliferation. In adult rabbits, lung PTHrP peaked at 3,289 +/- 230 pg/ml after 64 h of hyperoxia with 24 h of normoxic recovery and then dropped to 1,629 +/- 153 pg/ml at 48 h of recovery (P < 0.05). Type II cell proliferation peaked shortly after the fall in PTHrP. In newborn rabbits, lavage PTHrP increased by 50% during the first 8 days of hyperoxia, whereas type II cell growth decreased. PTHrP declined at the LD(50), concurrent with increased type II cell division. In summary, lung PTHrP initially rises after injury with >95% hyperoxia and then falls near the peak of injury. Changes in PTHrP are temporally related to type II cell proliferation and may regulate repair of lung injury.  相似文献   

2.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells and could be a regulatory factor for alveolar epithelial cell proliferation after lung injury. We investigated lung PTHrP expression in rats exposed to 85% oxygen. Lung levels of PTHrP were significantly decreased between 4 and 8 days of hyperoxia, concurrent with increased expression of proliferating cell nuclear antigen and increased incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA in lung corner cells. PTHrP receptor was present in both normal and hyperoxic lung. To test whether the fall in PTHrP was related to cell proliferation, we instilled PTHrP into lungs on the fourth day of hyperoxia. Eight hours later, BrdU labeling in alveolar corner cells was 3.2 +/- 0.4 cells/high-power field in hyperoxic PBS-instilled rats compared with 0.5 +/- 0.3 cells/high-power field in PTHrP-instilled rats (P < 0. 01). Thus PTHrP expression changes in response to lung injury due to 85% oxygen and may regulate cell proliferation.  相似文献   

3.
Acute silica lung injury is marked by alveolar phospholipidosis and type II cell proliferation. Parathyroid hormone-related protein (PTHrP) 1-34 could have a regulatory role in this process because it stimulates phosphatidylcholine secretion and inhibits type II cell growth. Other regions of the PTHrP molecule may have biological activity and can also exert pulmonary effects. This study examined the temporal pattern for expression of several regions of PTHrP after silica lung injury and evaluated the effects of changes in expression on cell proliferation and lung phospholipids. Expression of all PTHrP regions fell at 4 days after injury. Reversing the decline in PTHrP 1-34 or PTHrP 67-86 with one intratracheal dose and four daily subcutaneous doses of PTHrP 1-34 or PTHrP 67-86 stimulated bronchoalveolar lavage disaturated phosphatidylcholine (DSPC) levels. Cell culture studies indicate that the peptides exerted direct effects on DSPC secretion by type II cells. Neither peptide affected type II cell proliferation with this dosing regimen, but addition of an additional intratracheal dose resulted in significant inhibition of growth, consistent with previous effects of PTHrP 1-34 in hyperoxic lung injury. These studies establish a regulatory role for PTHrP 1-34 and PTHrP 67-86 in DSPC metabolism and type II cell proliferation in silica injury. Growth inhibitory effects of PTHrP could interact with phospholipid stimulation by affecting type II cell numbers. Further studies are needed to explore the complex interactions of PTHrP-derived peptides and the type II cell response at various stages of silica lung injury.  相似文献   

4.
Parathyroid hormone-related protein (PTHrP) is expressed in more advanced, aggressive tumors and may play an active role in cancer progression. This study investigated the effects of PTHrP on apoptosis after UV irradiation, Fas ligation, or staurosporine treatment in BEN human squamous lung carcinoma cells. Cells at 70% confluency were treated for 24 h with 100 nM PTHrP-(1-34), PTHrP-(38-64), PTHrP-(67-86), PTHrP-(107-139), or PTHrP-(140-173) in media with serum, exposed for 30 min to UV-B radiation (0.9 mJ/cm2), and maintained for another 24 h. Caspase-3, caspase-8, and caspase-9 activities increased fivefold. Pretreatment with PTHrP-(1-34) and PTHrP-(140-173) ameliorated apoptosis after UV irradiation, as indicated by reduced caspase activities, increased cell protein, decreased nuclear condensation, and increased clonal survival. Other peptides had no effect on measures of apoptosis. PTHrP-(140-173) also reduced caspase activities after Fas ligation by activating antibody, but neither peptide had effects on caspase-3 or caspase-9 activity after 1 µM staurosporine. These data indicate that PTHrP-(1-34) and PTHrP-(140-173) protect against death receptor-induced apoptosis in BEN lung cancer cells but are ineffective against mitochondrial pathways. PTHrP contributes to lung cancer cell survival in culture and could promote cancer progression in vivo. The mechanism for the protective effect against apoptosis remains to be determined. caspases; cell surface receptors; growth substances  相似文献   

5.
Parathyroid hormone-related protein (PTHrP)-(1–34) and PTHrP-(140–173) protect lung cancer cells from apoptosis after ultraviolet (UV) irradiation. This study evaluated upstream signaling in PTHrP-mediated alteration of lung cancer cell sensitivity to apoptosis. The two peptides increased cAMP levels in BEN lung cancer cells by 15–35% in a dose-dependent fashion, suggesting signaling through protein kinase A (PKA). In line with this view, the PKA inhibitor H89 abrogated the protective effects of PTHrP-(1–34) and PTHrP-(140–173) against caspase activation and DNA loss. PKA activation by forskolin, 3-isobutyl-1-methylxanthine (IBMX), or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate attenuated and H89 augmented apoptosis after UV exposure as indicated by caspase-3 activation, cell DNA loss, and morphological criteria. Studies with IBMX and varying doses of forskolin indicated that small increases in cAMP, on the order of those generated by IBMX alone and the PTHrP peptides, were sufficient to protect lung cancer cells from apoptosis. In summary, PTHrP-(1–34) and PTHrP-(140–173) stimulate PKA in lung carcinoma cells and protect cells against UV-induced caspase-3 activation and DNA fragmentation. PKA activation by other means also induces resistance to apoptosis, and the protective effect of the PTHrP peptide is blocked by PKA inhibition. Thus PKA appears to have a role in the regulatory effects of PTHrP on lung cancer cell survival. caspases; cell surface receptors; growth substances; signal transduction  相似文献   

6.
We have examined the effects of constitutive expression of PTHrP on the growth and differentiation of populations of cells derived from a clonal chondrocytic cell line, CFK2. Cells were stably transfected with cDNA encoding either full-length, secretory PTHrP (CFK2P) or nonsecretory PTHrP (CFK2P-SS). In cultures of cells plated at low density, secretory PTHrP acted as a potent mitogen compared with nonsecretory PTHrP or exogenous PTHrP-(1-34), both of which stimulated only a minor increase in proliferation. In populations of control cells maintained postconfluent for several weeks, there was a dramatic increase in expression of mRNA for type II collagen, aggrecan, and link protein. Addition of exogenous PTHrP-(1-34) at a concentration of 10−8 M to these cultures was ineffective in inhibiting this time-dependent increase in expression of matrix proteins. In contrast, populations of cells producing either secretory or nonsecretory forms of PTHrP, maintained over the same time period, demonstrated an almost complete inhibition of mRNA expression for matrix proteins. These observations demonstrate that PTHrP acts as a bifunctional modulator of chondrogenesis and that some of its biological activity is exerted via a mechanism distinct from the recognised signal transduction pathways linked to the PTH/PTHrP receptor. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The transforming growth factor-β (TGF-β) has been shown to increase in lung injury and in fibrotic states of the lung. In the current study, we sought to investigate whether TGFβ1 induced the expression of IL-1α and IL-8 in rat alveolar epithelial cells. We evaluated TGFβ1, IL-1α, and IL-8 expression by immunofluorescence in silica-injured and saline-treated control rat lungs. Antibodies to IL-1α, IL-8, and TGFβ1 showed intense staining in silica-injured lungs as compared to saline-instilled lungs. Primary isolated type II cells from silica-injured lungs showed increased expression of IL-1α as compared to saline-instilled lungs. To evaluate the effects of TGFβ1, we treated an immortalized rat type II cell-derived cell line (LM5) with 100 pg/ml of TGFβ1 in serum-free medium for 0–24 hours and analyzed the expression of IL-1α and IL-8 mRNAs and proteins using semi-quantitative RT-PCR, Northern blot analysis, Western blot analysis, and immunohistochemistry. Densitometric analysis of Northern blots showed modest constitutive expression of IL-1α gene in untreated control LM5 cells. TGFβ1 treatment resulted in an increase in IL-1α mRNA, that reached maximum levels (4-fold) by 2 hours and remained elevated for 4–16 hours, with a subsequent decline by 24 hours. Similarly, Northern blot and RT-PCR analysis demonstrated that TGFβ1 treatment resulted in maximum induction of IL-8 mRNA (6–8.5-fold) within 1–4 hours. The levels remained elevated for up to 24 hours afterwards. Western blot analysis results further confirmed the expression of both IL-1α and IL-8 proteins by LM5 cells. TGFβ1 treatment resulted in increased expression of both IL-1α and IL-8 proteins. Immunofluorescence studies demonstrated increased staining of IL-1α by TGFβ1 as compared to untreated cells. These results suggest that TGFβ1 may regulate IL-1α and IL-8 expression in alveolar epithelial cells and contribute to polymorphonuclear leukocyte recruitment and lung injury in clinical states with increased TGFβ1. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.  相似文献   

9.
10.
The influence of clofibrate (ethyl-alpha-p-chlorophenoxy-isobutyrate), a hypolipidemic peroxisome proliferating agent, has been tested on the lungs of adult male rats. Drug administration for 7 days caused structural changes in two types of lung cells, both of which are involved in the metabolism of the pulmonary surfactant. By light microscopy the prominent features were the presence of enlarged type II alveolar epithelial cells and foamy intraalveolar macrophages. Compared with controls, type II cells in treated rats apparently contained more numerous surfactant-containing lamellar bodies, as visualized in semi-thin sections of Epon-embedded tissue. This difference was quantified morphometrically by light microscopy: the number of lamellar bodies was estimated as the profile number per individual type II alveolar cell, transsected at its nucleus. Clofibrate administration for 7 days resulted in a significant increase in the number of the lamellar inclusions. In contrast the number of type II alveolar cells per area of lung remained unchanged. There was no evidence of atelectasis or inflammatory infiltration in the drug-treated lungs, a finding confirmed in sections of perfusion-fixed, paraffin-embedded whole lung-lobes. By electron microscopy the lamellar inclusion bodies in the type II alveolar cells in treated rats, apart from being more numerous and sometimes smaller, were morphologically identical to those in controls. The vacuolated alveolar macrophages seen in treated rats also contained various lamellar phospholipid inclusions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Chorioamnionitis is frequent in preterm labor and increases the risk of bronchopulmonary dysplasia. We hypothesized that intra-amniotic endotoxin injures the lung in utero, causing a sequence of inflammation and tissue injury similar to that which occurs in the injured adult lung. Preterm lamb lungs at 125 days gestational age were evaluated for indicators of inflammation, injury, and repair 5 h, 24 h, 72 h, and 7 days after 4 mg of intra-amniotic endotoxin injection. At 5 h, the epithelial cells in large airways expressed heat shock protein 70, and alveolar interleukin-8 was increased. Surfactant protein B (SP-B) decreased in alveolar type II cells at 5 h, and SP-B in lung tissue and alveolar lavage fluid increased by 72 h. By 24 h, neutrophils were recruited into the large airways, and cell death was the highest. Alveolar type II cells decreased by 25% at 24 h, and proliferation was highest at 72 h, consistent with tissue remodeling. Intra-amniotic endotoxin caused surfactant secretion, inflammation, cell death, and remodeling as indications of lung injury. The recovery phase was accompanied by maturational changes in the fetal lung.  相似文献   

12.
Full-length human parathyroid hormone-related protein (PTHrP-(1-141] as well as a carboxyl-terminal shortened form (PTHrP-(1-108] have been expressed from recombinant DNA-derived clones. These proteins were expressed in Escherichia coli as fusion proteins so that cyanogen bromide cleavage yields the desired product. Both proteins were purified and then characterized by sodium dodecyl sulfate gel electrophoresis, amino-terminal amino acid sequencing, peptide mapping, and mass spectral analysis. Recombinant PTHrP-(1-141), PTHrP-(1-108), synthetic PTHrP-(1-34), and naturally derived PTHrP are all equipotent in the stimulation of cyclic AMP levels in the osteoblast-like cell line UMR 106-01. However, PTHrP-(1-141) and -(1-108) are two to four times more active than PTHrP-(1-34) in the stimulation of plasminogen activator activity from this cell line. PTHrP-(1-141) reacts equipotently with PTHrP-(1-34) in a radioimmunoassay using an antiserum prepared against PTHrP-(1-34). PTHrP-(1-141), -(1-108), and -(1-84) were used as PTHrP-specific mobility standards on sodium dodecyl sulfate gel electrophoresis to determine the approximate length of two forms of naturally derived PTHrP. The data show that PTHrP purified from the lung tumor cell line BEN contains a major form of about 108 amino acids and another form of about 141 amino acids.  相似文献   

13.
Although keratinocyte growth factor (KGF) protects against experimental acute lung injury, the mechanisms for the protective effect are incompletely understood. Therefore, the time-dependent effects of KGF on alveolar epithelial fluid transport were studied in rats 48-240 h after intratracheal administration of KGF (5 mg/kg). There was a marked proliferative response to KGF, measured both by in vivo bromodeoxyuridine staining and by staining with an antibody to a type II cell antigen. In controls, alveolar liquid clearance (ALC) was 23 +/- 3%/h. After KGF pretreatment, ALC was significantly increased to 30 +/- 2%/h at 48 h, to 39 +/- 2%/h at 72 h, and to 36 +/- 3%/h at 120 h compared with controls (P < 0.05). By 240 h, ALC had returned to near-control levels (26 +/- 2%/h). The increase in ALC was explained primarily by the proliferation of alveolar type II cells, since there was a good correlation between the number of alveolar type II cells and the increase in ALC (r = 0.92, P = 0.02). The fraction of ALC inhibited by amiloride was similar in control rats (33%) as in 72-h KGF-pretreated rats (38%), indicating that there was probably no major change in the apical pathways for Na uptake in the KGF-pretreated rats at this time point. However, more rapid ALC at 120 h, compared with 48 h after KGF treatment, may be explained by greater maturation of alpha-epithelial Na channel, since its expression was greater at 120 than at 48 h, whereas the number of type II cells was the same at these two time points. beta-Adrenergic stimulation with terbutaline 72 h after KGF pretreatment further increased ALC to 50 +/- 7%/h (P < 0.5). In summary, KGF induced a sustained increase over 120 h in the fluid transport capacity of the alveolar epithelium. This impressive upregulation in fluid transport was further enhanced with beta-adrenergic agonist therapy, thus providing evidence that two different treatments can simultaneously increase the fluid transport capacity of the alveolar epithelium.  相似文献   

14.
Coordinated proliferation of lung cells is required for normal lung growth and differentiation. Chronic injury to developing lung may disrupt normal patterns of cell proliferation. To examine patterns of cell proliferation in injured developing lungs, we investigated premature baboons delivered at 125 days gestation (approximately 67% of term) and treated with oxygen and ventilation for 6, 14, or 21 days (PRN). Each PRN treatment group contained 3 or 4 animals. During normal in utero lung development, the proportion of proliferating lung cells declined as measured by the cell-cycle marker Ki67. In the PRN group, the proportion of proliferating lung cells was 2.5-8.5-fold greater than in corresponding gestational controls. By 14 days of treatment, the proportion of cells that expressed pro-surfactant protein B (proSP-B) was ~2.5-fold greater than in gestational controls. In the PRN group, 41% of proliferating cells expressed proSP-B compared with 5.8% in the gestational controls. By 21 days of treatment, proliferation of proSP-B-expressing epithelial cells declined substantially, but the proportion of proliferating non-proSP-B-expressing cells increased approximately sevenfold. These data show that the development of chronic lung disease is associated with major alterations in normal patterns of lung-cell proliferation.  相似文献   

15.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

16.
The aim of the present study was to compare the classical parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) receptors in MCF7 breast cancer cells with SaOS-2 osteosarcoma cell line. Quantitative binding showed that (125)I-PTHrP-1-34(Tyr) binds with a single binding site in both cells. However (125)I-PTHrP-1-34(Tyr) has higher affinity binding in MCF7 (K(D) = 1.88 +/- 0.08 nM) than in SaOS-2 cells (K(D) = 4.4 +/- 0.185 nM). The competitive binding using 3.3 nM (125)I-PTHrP-1-34(Tyr) with increasing amounts (0.33-33 nM) of unlabelled human PTHrP-1-34, PTHrP-7-34, PTHrP-1-86 His(5)-PTHrP-1-36, His(5)-Phe(23)-PTHrP-1-36 or PTH-1-34 revealed different displacements. In SaOS-2 the PTHrP-7-34 and PTHrP-1-86 caused similar displacement compared with 73% by PTH-1-34 and 70% by PTHrP-1-34. However, in MCF7, PTHrP-7-34, PTHrP-1-86 and PTH-1-34 displaced by 54%, 72% and 67%, respectively, compared to 87% by PTHrP-1-34. The His(5)-Phe(23)-PTHrP-1-36 caused an increase in the K(D) from 2.0 +/- 0.03 nM to 2.75 +/- 0.045 nM in MCF7 cells, but had no significant effect in SaOS-2 cells. The PTH/PTHrP receptor in both cell lines revealed a single 85 KDa band with different intensity. Our results suggest that the PTH/PTHrP receptor in MCF7 cells has higher binding affinity for PTHrP than PTH compared to the receptor in SaOS-2 cells.  相似文献   

17.
18.
Parathyroid hormone (PTH)-related peptide (PTHrP) can modulate the proliferation and differentiation of a number of cell types including osteoblasts. PTHrP can activate a G protein-coupled PTH/PTHrP receptor, which can interface with several second-messenger systems. In the current study, we have examined the signaling pathways involved in stimulated type I collagen and alkaline phosphatase expression in the human osteoblast-derived osteosarcoma cells, MG-63. By use of Northern blotting and histochemical analysis, maximum induction of these two markers of osteoblast differentiation occurred after 8 h of treatment with 100 nM PTHrP-(1-34). Chemical inhibitors of adenylate cyclase (H-89) or of protein kinase C (chelerythrine chloride) each diminished PTHrP-mediated type I collagen and alkaline phosphatase stimulation in a dose-dependent manner. These effects of PTHrP could also be blocked by inhibiting the Ras-mitogen-activated protein kinase (MAPK) pathway with a Ras farnesylation inhibitor, B1086, or with a MAPK inhibitor, PD-98059. Transient transfection of MG-63 cells with a mutant form of Galpha, which can sequester betagamma-subunits, showed significant downregulation of PTHrP-stimulated type I collagen expression, as did inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) by wortmannin. Consequently, the betagamma-PI 3-kinase pathway may be involved in PTHrP stimulation of Ras. Collectively, these results demonstrate that, acting via its G protein-coupled receptor, PTHrP can induce indexes of osteoblast differentiation by utilizing multiple, perhaps parallel, signaling pathways.  相似文献   

19.
The membrane protein carcinoembryonic antigen cell adhesion molecule (CEACAM6) is expressed in the epithelium of various tissues, participating in innate immune defense, cell proliferation and differentiation, with overexpression in gastrointestinal tract, pancreatic and lung tumors. It is developmentally and hormonally regulated in fetal human lung, with an apparent increased production in preterm infants with respiratory failure. To further examine the expression and cell localization of CEACAM6, we performed immunohistochemical and biochemical studies in lung specimens from infants with and without chronic lung disease. CEACAM6 protein and mRNA were increased ~4-fold in lungs from infants with chronic lung disease as compared with controls. By immunostaining, CEACAM6 expression was markedly increased in the lung parenchyma of infants and children with a variety of chronic lung disorders, localizing to hyperplastic epithelial cells with a ~7-fold elevated proliferative rate by PCNA staining. Some of these cells also co-expressed membrane markers of both type I and type II cells, which is not observed in normal postnatal lung, suggesting they are transitional epithelial cells. We suggest that CEACAM6 is both a marker of lung epithelial progenitor cells and a contributor to the proliferative response after injury due to its anti-apoptotic and cell adhesive properties.  相似文献   

20.
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号