首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal polypeptide (VIP) has been shown to inhibit lymphocyte function and is believed to modulate the immune response. We explored the possible immunomodulatory effects of VIP on alveolar macrophage (AM) function by examining its influence on AM phagocytosis and chemotaxis. Rat AMs were collected by bronchoalveolar lavage and incubated for 90 min with polystyrene beads in the presence or absence of VIP in concentrations from 10(-11) M to 10(-5) M. VIP significantly (P less than 0.0001) inhibited AM phagocytosis of polystyrene beads at concentrations of 10(-11) to 10(-6) M, with a maximal inhibition of 35% at 10(-6) M (but no inhibition at 10(-5) M). AMs were also incubated for 90 min in a chemotaxis chamber with endotoxin-activated rat serum (EARS) as a chemoattractant, with or without VIP in concentrations from 10(-9) to 10(-6) M. VIP significantly (P less than 0.0001) inhibited AM chemotaxis by at least 30% at concentrations of 10(-9) to 10(-6) M, with a maximal inhibition of 46% at 10(-7) M. These results indicate that VIP, in concentrations from 10(-11) to 10(-6) M, inhibits rat AM function as assessed by phagocytosis of polystyrene beads and chemotaxis to EARS. The inhibition of alveolar macrophage function is another mechanism by which VIP may modulate the immune response in the lung.  相似文献   

2.
Membrane-associated intercellular adhesion molecule-1 (mICAM-1; CD54) is constitutively expressed on the surface of type I alveolar epithelial cells (AEC). Soluble ICAM-1 (sICAM-1) may be produced by proteolytic cleavage of mICAM-1 or by alternative splicing of ICAM-1 mRNA. In contrast to inducible expression seen in most cell types, sICAM-1 is constitutively released by type I AEC and is present in normal alveolar lining fluid. Therefore, we compared the mechanism of sICAM-1 production in primary cultures of two closely juxtaposed cells in the alveolar wall, AEC and pulmonary microvascular endothelial cells (PVEC). AEC, but not PVEC, demonstrated high-level baseline expression of sICAM-1. Stimulation of AEC with TNFalpha or LPS resulted in minimal increase in AEC sICAM-1, whereas PVEC sICAM-1 was briskly induced in response to these signals. AEC sICAM-1 shedding was significantly reduced by treatment with a serine protease inhibitor, but not by cysteine, metalloprotease, or aspartic protease inhibitors. In contrast, none of these inhibitors effected sICAM-1 expression in PVEC. RT-PCR, followed by gel analysis of total RNA, suggests that alternatively spliced fragments are present in both cell types. However, a 16-mer oligopeptide corresponding to the juxtamembrane region of mICAM-1 completely abrogated sICAM-1 shedding in AEC but reduced stimulated PVEC sICAM-1 release by only 20%. Based on these data, we conclude that the predominant mechanism of sICAM-1 production likely differs in the two cell types from opposite sides of the alveolar wall.  相似文献   

3.
GM-CSF gene-targeted (GM(-/-)) mice have impaired pulmonary clearance of bacterial and fungal pathogens by alveolar macrophages (AMs). Because AMs also clear adenovirus from the lung, the role of GM-CSF in endocytic internalization of adenovirus by AMs was evaluated. Pulmonary clearance of adenovirus was severely impaired in GM(-/-) mice compared to wild-type (GM(+/+)) mice as determined by Southern analysis of viral DNA. Internalization of adenovirus by AMs was deficient in GM(-/-) mice in vivo and in vitro as determined by uptake of fluorescently labeled adenovirus or by PCR quantification of adenoviral DNA internalized within AMs. An AM cell line previously established from GM(-/-) mice (mAM) had impaired internalization of adenovirus and transferrin-coated 100-nm latex beads compared to MH-S, a GM(+/+) AM cell line. Phagocytosis of 4- micro m latex beads was also impaired in mAM cells as determined by confocal and fluorescence microscopy. Retroviral vector-mediated reconstitution of PU.1 expression in cultured GM(-/-) AMs restored phagocytosis of 4- micro m beads, endocytosis of adenovirus, and transferrin-coated 100-nm beads (independent of integrin alpha(V) and transferrin receptors, respectively), and restored normal cytoskeletal organization, filamentous actin distribution, and stimulated formation of filopodia. Interestingly, mRNA for the phosphoinositide 3 kinase p110gamma isoform, important in macrophage phagocytic function, was absent in GM(-/-) AMs and was restored by PU.1 expression. These data show that GM-CSF, via PU.1, regulates endocytosis of small ( approximately 100 nm) pathogens/inert particles and phagocytosis of very large inert particles and suggests regulation of cytoskeletal organization by GM-CSF/PU.1 as the molecular basis of this control.  相似文献   

4.
Intercellular adhesion molecule-1 (ICAM-1; CD54) is an adhesion molecule constitutively expressed in abundance on the cell surface of type I alveolar epithelial cells (AEC) in the normal lung and is a critical participant in pulmonary innate immunity. At many sites, ICAM-1 is shed from the cell surface as a soluble molecule (sICAM-1). Limited information is available regarding the presence, source, or significance of sICAM-1 in the alveolar lining fluid of normal or injured lungs. We found sICAM-1 in the bronchoalveolar lavage (BAL) fluid of normal mice (386 +/- 50 ng/ml). Additionally, sICAM-1 was spontaneously released by murine AEC in primary culture as type II cells spread and assumed characteristics of type I cells. Shedding of sICAM-1 increased significantly at later points in culture (5-7 days) compared with earlier time points (3-5 days). In contrast, treatment of AEC with inflammatory cytokines had limited effect on sICAM-1 shedding. BAL sICAM-1 was evaluated in in vivo models of acute lung injury. In hyperoxic lung injury, a reversible process with a major component of leak across the alveolar wall, BAL fluid sICAM-1 only increased in parallel with increased alveolar protein. However, in lung injury due to FITC, there were increased levels of sICAM-1 in BAL that were independent of changes in BAL total protein concentration. We speculate that after lung injury, changes in sICAM-1 in BAL fluid are associated with progressive injury and may be a reflection of type I cell differentiation during reepithelialization of the injured lung.  相似文献   

5.
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.  相似文献   

6.
Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC) injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL). Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR-) and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.  相似文献   

7.

Background

A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1) plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs), we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM) function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1) is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection.

Methods

Using the surfactant protein C (SPC) promoter, we developed a transgenic mouse (SPC-sICAM-1) that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae.

Results

SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups.

Conclusions

We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.  相似文献   

8.
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast was reduced close to background level in Gsn- neutrophils. Thus, gelsolin is essential for efficient IgG- but not complement-mediated phagocytosis. Furthermore, attachment of IgG-opsonized yeast to Gsn- neutrophils was reduced ( approximately 50%) but not to the same extent as ingestion ( approximately 73%). This was not due to reduced surface expression of the Fcgamma-receptor or its lateral mobility. This suggests that attachment and ingestion of IgG-opsonized yeast by murine neutrophils are actin-dependent and gelsolin is important for both steps in phagocytosis. We also investigated granule exocytosis and several steps in phagosome processing, namely the formation of actin around the phagosome, translocation of granules, and activation of the NADPH-oxidase. All these functions were normal in Gsn- neutrophils. Thus, the role of gelsolin is specific for IgG-mediated phagocytosis. Our data suggest that gelsolin is part of the molecular machinery that distinguishes complement and IgG-mediated phagocytosis. The latter requires a more dynamic reorganization of the cytoskeleton.  相似文献   

9.
ICAM-1 mediates interaction of cardiomyocytes with the extracellular matrix and leukocytes and may play a role in altering contractility. To investigate this possibility, rat ventricular cardiomyocytes were activated using TNF-alpha, IL-1beta, or LPS, washed, cultured with quiescent rat polymorphonuclear leukocytes (PMNs) for 4 h, and electrically stimulated to determine fractional shortening. PMNs cultured with activated cardiomyocytes reduced control fractional shortening of 20.5 +/- 0.7% by -2.8 +/- 0.3% per adherent PMN (P < 0.001). Fixing PMNs with paraformaldehyde or glutaraldehyde did not prevent PMN-mediated decreases in cardiomyocyte fractional shortening. However, PMN adherence and decreased fractional shortening were prevented by anti-ICAM-1 and anti-CD18 antibodies. Reduced fractional shortening was reproduced in the absence of PMNs by ICAM-1 binding using cross-linking antibodies (reduced by 36 +/- 3% from control, P < 0.01). Immunofluorescent staining demonstrated increased cortical cytoskeleton-associated focal adhesion kinase expression after ICAM-1 cross-linking, suggesting involvement of the actin cytoskeleton. Indeed, disruption of F-actin filament assembly using cytochalasin D or latrunculin A did not prevent PMN adherence but prevented decreased fractional shortening. Inhibition of the cytoskeleton-associated Rho-kinase pathway with HA-1077 prevented ICAM-1-mediated decreases in cardiomyocyte contractility, further suggesting a central role of the actin cytoskeleton. Importantly, ICAM-1 cross-linking did not alter the total intracellular Ca2+ transient during cardiomyocyte contraction but greatly increased heterogeneity of intracellular Ca2+ release. Thus we have identified a novel regulatory mechanism of cardiomyocyte contractility involving the actin cytoskeleton as a central regulator of the normally highly coordinated pattern of sarcoplasmic Ca2+ release. Cardiomyocyte ICAM-1 binding, by PMNs or other ligands, induces decreased cardiomyocyte contractility via this pathway.  相似文献   

10.
Endothelial cell ICAM-1 interacts with leukocyte beta(2) integrins to mediate adhesion and transmit outside-in signals that facilitate leukocyte transmigration. ICAM-1 redistribution and clustering appear necessary for leukocyte transmigration, but the mechanisms controlling ICAM-1 redistribution and clustering have not been identified. We recently reported that Src kinase phosphorylation of endothelial cortactin regulates polymorphonuclear cell (PMN) transmigration. In this study, we tested the hypotheses that the Src family kinase-cortactin pathway mediates association of ICAM-1 with the actin cytoskeleton and that this association is required for ICAM-1 clustering and leukocyte transmigration. Cross-linking ICAM-1 induced cytoskeletal remodeling and a decrease in ICAM-1 lateral mobility, as assessed by fluorescence recovery after photobleaching. Cytoskeletal remodeling after ICAM-1 cross-linking was reduced by knockdown of cortactin by small interfering RNA, by expression of a cortactin mutant deficient in Src phosphorylation sites (cortactin3F), and by the Src kinase inhibitor PP2. Pretreatment of cytokine-activated human endothelial monolayers with cortactin small interfering RNA significantly decreased both actin and ICAM-1 clustering around adherent PMN and the formation of actin-ICAM-1 clusters required for PMN transmigration. Our data suggest a model in which tyrosine phosphorylation of cortactin dynamically links ICAM-1 to the actin cytoskeleton, enabling ICAM-1 to form clusters and facilitate leukocyte transmigration.  相似文献   

11.
We hypothesized that pulmonary granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically involved in determining the functional capabilities of alveolar macrophages (AM) for host defense. To test this hypothesis, cells were collected by lung lavage from GM-CSF mutant mice [GM(-/-)] and C57BL/6 wild-type mice. GM(-/-) mice yielded almost 4-fold more AM than wild-type mice. The percentage of cells positive for the beta(2)-integrins CD11a and CD11c was reduced significantly in GM(-/-) AM compared with wild-type cells, whereas expression of CD11b was similar in the two groups. The phagocytic activity of GM(-/-) AM for FITC-labeled microspheres was impaired significantly compared with that of wild-type AM both in vitro and in vivo (after intratracheal inoculation with FITC-labeled beads). Stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and leukotrienes by AM from the GM(-/-) mice was greatly reduced compared with wild-type AM, whereas secretion of monocyte chemoattractant protein-1 was increased. Transgenic expression of GM-CSF exclusively in the lungs of GM(-/-) mice resulted in AM with normal or supranormal expression of CD11a and CD11c, phagocytic activity, and TNF-alpha secretion. Thus, in the absence of GM-CSF, AM functional capabilities for host defense were significantly impaired but were restored by lung-specific expression of GM-CSF.  相似文献   

12.
卵巢激素对肺泡巨噬细胞趋化活性的影响   总被引:2,自引:2,他引:0  
为探讨卵巢激素对非性器官肺脏的防御功能有无影响,本研究以肺泡巨噬细胞(AM)趋化活性为指标,观察了卵巢激素对成年雄性大鼠离体AM的趋化活性的作用。结果显示:不同浓度的酵母多糖激活血清与AM在体外培养3.5h,对AM趋化性有良好的线性关系。雌二醇能抑制AM的趋化活性,量效关系显著(r=-0.9280,P<0.01);而孕酮则促进AM的趋化活性,亦具有剂量依从性(r=0.9975,P<0.01)。提示:卵巢激素除参与性器官功能的调节外,对于非性器官肺脏的防御功能亦具有一定的调控作用。  相似文献   

13.
Leukocyte infiltration is a hallmark of the atherosclerotic lesion. These cells are captured by cellular adhesion molecules (CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule (PECAM), and E-selectin, on endothelial cells (EC). We examined the role of the actin cytoskeleton in tumor necrosis factor-alpha (TNF-alpha)-induced translocation of CAMs to the cell surface. Human aortic EC were grown on 96-well plates and an ELISA was used to assess surface expression of the CAMs. TNF-alpha increased VCAM-1, ICAM-1, and E-selectin by 4 h but had no affect on the expression of PECAM. A functioning actin cytoskeleton was important for VCAM-1 and ICAM-1 expression as both cytochalasin D, an actin filament disruptor, and jasplakinolide, an actin filament stabilizer, attenuated the expression of these CAMs. These compounds were ineffective in altering E-selectin surface expression. Myosin light chains are phosphorylated in response to TNF-alpha and this appears to be regulated by Rho kinase instead of myosin light chain kinase. However, the Rho kinase inhibitor, Y27632, had no affect on TNF-alpha-induced CAM expression. ML-7, a myosin light chain kinase inhibitor, had a modest inhibitory effect on the translocation of VCAM-1 but not on ICAM-1 or E-selectin. These data suggest that the surface expression of VCAM-1 and ICAM-1 is dependent on cycling of the actin cytoskeleton. Nevertheless, modulation of actin filaments via myosin light chain phosphorylation is not necessary. The regulation of E-selectin surface expression differs from that of the other CAMs.  相似文献   

14.
We have compared the oxidative response of alveolar macrophages (AM) during opsonin-dependent and independent phagocytosis by using multiparameter flow cytometry. The respiratory burst of AM during phagocytosis was quantitated by the intracellular oxidation of the nonfluorescent precursors dichlorofluorescin diacetate (DCFH) or hydroethidine (HE, a reduced precursor of ethidium) to their fluorescent (oxidized) counterparts. After loading freshly isolated normal hamster AM with DCFH or HE, red or green fluorescent beads, respectively, were added to the shaking cell suspensions. Ingestion of opsonized particles by AM caused a marked increase in oxidation of both DCFH and HE proportional to the number of beads ingested. In contrast, uptake of one to three unopsonized particles per cell led to inhibition of oxidative activity compared to control cells incubated without particles. AM ingesting four or more unopsonized particles showed some increase in oxidative metabolism, but far less than that with identical numbers of particles in opsonin-dependent ingestion. Similar results were obtained using fluorescent labeled staphylococcal bacteria. Using three-color flow cytometry to study cells ingesting both types of particles, cells first ingesting unopsonized beads were also found to have an inhibited oxidative response to subsequently ingested opsonized particles. The mitochondrial poison antimycin inhibited most of the intracellular oxidative response to either type of phagocytosis. The remaining antimycin-insensitive, membrane derived respiratory burst of AM was also substantially diminished after phagocytosis of unopsonized particles vs similar numbers of opsonized particles. The greatly increased mitochondrial respiration in AM during phagocytosis of opsonized particles may be related to bactericidal mechanisms. Killing of ingested Staphylococcus by AM was markedly impaired in the presence of antimycin. The results suggest that AM may ingest the numerous, unopsonized inert particles that are inhaled without generation of potentially toxic oxygen metabolites, while retaining the capacity to undergo a respiratory burst after ingesting opsonized particles and bacteria. The mechanism(s) for this distinct response may include generation of an inhibitor of intracellular oxidative metabolism.  相似文献   

15.
Candida species are increasingly important fungal pathogens. The reaction of rat alveolar macrophages (AM) to Candida albicans was compared with that to C. glabrata and C. krusei . Phagocytosis of C. glabrata was similar to that of C. albicans , but significantly slower for C. krusei due to reduced attachment. After opsonization, attachment of C. albicans and C. krusei to AM was significantly increased and there was no significant difference between the two species. The oxidative metabolism of AM with candida species was two to three times higher than that of the resting AM both during and 24 h after the phagocytosis. All three species showed a considerable fraction (5–10%) of phagolysosomes with pH ≥ 6·5 after 3 h and a smaller percentage (1%) after 24 h.  相似文献   

16.
ICAM-1 is an intercellular adhesion molecule of the immunoglobulin supergene family involved in adherence of leukocytes to the endothelium and in leukocytic accumulation in pulmonary injury. In the current study, the antigen retrieval technique was used to detect ICAM-1 immunohistochemically in paraffin sections of lungs from human, mouse and rat as well as in bleomycin- or radiation-induced fibrotic lungs from rat and human. In normal lung tissue, the expression of ICAM-1 on alveolar type I epithelial cells is stronger than on alveolar macrophages and on endothelial cells. Preembedding immuno-electron microscopy of normal rat, mouse and human lung samples revealed sclective ICAM-1 expression on the surface of type I alveolar epithelial cells and, to a lesser extent, on the pulmonary capillary endothelium and on alveolar macrophages. In fibrotic specimens, both focal lack and strengthening of immunostaining on the surface of type I cells was found. Alveolar macrophages were found focally lacking ICAM-1 immunoreactivity. In some cases, rat type II pneumocytes exhibited positive immunoreactions for ICAM-1. Immunoelectron microscopy with preembedded rat lungs (bleomycin-exposed cases) confirmed the altered ICAM-1 distribution at the alveolar epithelial surface. In the alveolar fluid of fibrotic rat lungs, in contrast to that from untreated controls, soluble ICAM-1 was detected by western blot analysis.  相似文献   

17.
Surfactant protein-A (SP-A) plays multiple roles in pulmonary host defense, including stimulating bacterial phagocytosis by innate immune cells. Previously, SP-A was shown to interact with complement protein C1q. Our goal was to further characterize this interaction and elucidate its functional consequences. Radiolabeled SP-A bound solid-phase C1q but not other complement proteins tested. The lectin activity of SP-A was not required for binding to C1q. Because C1q is involved in bacterial clearance but alone does not efficiently enhance the phagocytosis of most bacteria, we hypothesize that SP-A enhances phagocytosis of C1q-coated antigens. SP-A enhanced by sixfold the percentage of rat alveolar macrophages in suspension that phagocytosed C1q-coated fluorescent beads. Furthermore, uptake of C1q-coated beads was enhanced when either beads or alveolar macrophages were preincubated with SP-A. In contrast, SP-A had no significant effect on the uptake of C1q-coated beads by alveolar macrophages adhered to plastic slides. We conclude that SP-A may serve a protective role in the lung by interacting with C1q to enhance the clearance of foreign particles.  相似文献   

18.
TGF-beta1 (TGF) has been implicated in the pathogenesis of several chronic infections and is thought to promote microbial persistence by interfering with macrophage function. In rats with experimental pulmonary cryptococcosis, increased lung levels of TGF were present at 12 mo of infection. Within the lung, expression of TGF localized to epithelioid cells and foamy macrophages in areas of inflammation. Increased TGF expression was also observed in the lungs of experimentally infected mice and a patient with pulmonary cryptococcosis. TGF reduced Ab and serum-mediated phagocytosis of Cryptococcus neoformans by rat alveolar macrophages (AM) and peripheral blood monocytes, and this was associated with decreased chemokine production and oxidative burst. Interestingly, TGF-treated rat AM limited both intracellular and extracellular growth of C. neoformans. Control of C. neoformans growth by TGF-treated rat AM was due to increased secretion of lysozyme, a protein with potent antifungal activity. The effects of TGF on the course of infection were dependent on the timing of TGF administration relative to the time of infection. TGF treatment of chronically infected rats resulted in reduced lung fungal burden, while treatment early in the course of infection resulted in increased fungal burden. In summary, our studies suggest a dual role for TGF in persistent fungal pneumonia whereby it contributes to the local control of infection by enhancing macrophage antifungal efficacy through increased lysozyme secretion, while limiting inflammation by inhibiting macrophage/monocyte phagocytosis and reducing associated chemokine production and oxidative burst.  相似文献   

19.
Chronic inflammation incited by bacteria in the saccular lung of premature infants contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). LPS-mediated type II alveolar epithelial cell (AEC) injury induces the expression of pro-inflammatory cytokines that trigger pulmonary neutrophil influx, alveolar matrix degradation and lung remodeling. We hypothesized that NADPH oxidase (Nox)-dependent mechanisms mediate LPS-induced cytokine expression in AEC. We examined the role of p47phox in mediating LPS-dependent inflammatory cytokine expression in A549 cells (which exhibit phenotypic features characteristic of type II AEC) and elucidated the proximal signaling events by which Nox is activated by LPS. LPS-induced ICAM-1 and IL-8 expression was associated with increased superoxide formation in AEC. LPS-mediated oxidative stress and cytokine expression was inhibited by apocynin and augmented by PMA demonstrating that Nox-dependent redox signaling regulates LPS-dependent pro-inflammatory signaling in AEC. In LPS-treated cells, p47phox translocated from the cytoplasm to the perinuclear region and co-localized with gp91phox. LPS also induced a temporal increase in p47phox serine304 phosphorylation in AEC. While inhibition of classical PKC and novel PKC with calphostin and rottlerin did not inhibit ICAM-1 or IL-8 expression, the myristolyated PKCζ pseudosubstrate peptide (a specific inhibitor of PKCζ) inhibited LPS-induced cytokine expression in AEC. Inhibition of PKCζ also attenuated LPS-mediated p47phox phosphorylation and perinuclear translocation in AEC. Consistent with these data, LPS activated PKCζ in AEC as evidenced by increased threonine410 phophorylation. We conclude that PKCζ-mediated p47phox activation regulates LPS-dependent cytokine expression in AEC. Selective inhibition of PKCζ or p47phox might attenuate LPS-mediated inflammation and alveolar remodeling in BPD.  相似文献   

20.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号