共查询到20条相似文献,搜索用时 15 毫秒
1.
Keratinocyte growth factor promotes cell motility during alveolar epithelial repair in vitro 总被引:4,自引:0,他引:4
Galiacy S Planus E Lepetit H Féréol S Laurent V Ware L Isabey D Matthay M Harf A d'Ortho MP 《Experimental cell research》2003,283(2):215-229
Epithelia play a key role as protective barriers, and mechanisms of repair are crucial for restoring epithelial barrier integrity, especially in the lung. Cell spreading and migration are the first steps of reepithelialization. Keratinocyte growth factor (KGF) plays a key role in lung epithelial repair and protects against various injuries. We hypothesized that KGF may protect the lung not only by inducing proliferation but also by promoting epithelial repair via enhanced epithelial cell migration. In an in vitro wound-healing model, we found that KGF enhanced wound closure by 33%. KGF acted primarily by inducing lamellipodia emission (73.2 +/- 3.9% of KGF-treated cells had lamellipodia vs 61.3 +/- 3.4% of control cells) and increasing their relative surface area (59 +/- 2.7% with KGF vs 48 +/- 2.0% in controls). KGF reduced cytoskeleton stiffness as measured by magnetic twisting cytometry and increased cell motility (5.8 +/- 0.42 microm/h with KGF vs 3.7 +/- 0.41 microm/h in controls). KGF-increased cell motility was associated with increased fibronectin deposition during wound closure and with fibronectin reorganization into fibrils at the rear of the cells. Taken together, our findings strongly suggest that KGF may promote epithelial repair through several mechanisms involved in cell migration. 相似文献
2.
Oswari J Matthay MA Margulies SS 《American journal of physiology. Lung cellular and molecular physiology》2001,281(5):L1068-L1077
Keratinocyte growth factor (KGF) is a potent mitogen that prevents lung epithelial injury in vivo. We hypothesized that KGF treatment reduces ventilator-induced lung injury by increasing the alveolar epithelial tolerance to mechanical strain. We evaluated the effects of in vivo KGF treatment to rats on the response of alveolar type II (ATII) cells to in vitro controlled, uniform deformation. KGF (5 mg/kg) or saline (no-treatment control) was instilled intratracheally in rats, and ATII cells were isolated 48 h later. After 24 h in culture, both cell groups were exposed to 1 h of continuous cyclic strain (25% change in surface area); undeformed wells were included as controls. Cytotoxicity was evaluated quantitatively with fluorescent immunocytochemistry. There was >1% cell death in undeformed KGF-treated and control groups. KGF pretreatment significantly reduced deformation-related cell mortality to only 2.2 +/- 1.3% (SD) from 49 +/- 5.5% in control wells (P < 0.001). Effects of extracellular matrix, actin cytoskeleton, and phenotype of KGF-treated and control cells were examined. The large reduction in deformation-induced cell death demonstrates that KGF protects ATII cells by increasing their strain tolerance and supports KGF treatment as a potential preventative measure for ventilator-induced lung injury. 相似文献
3.
Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms 总被引:34,自引:5,他引:34 下载免费PDF全文
G F Pierce T A Mustoe J Lingelbach V R Masakowski G L Griffin R M Senior T F Deuel 《The Journal of cell biology》1989,109(1):429-440
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time. 相似文献
4.
5.
Jeffrey S. Rubin Donald P. Bottaro Marcio Chedid Toru Miki Dina Ron Hyae-Gyeong Cheon William G. Taylor Emma Fortney Hiromi Sakata Paul W. Finch William J. LaRochelle 《Cell biology international》1995,19(5):399-411
Keratinocyte growth factor (KGF) is a member of the heparin-binding fibroblast growth factor family (FGF-7) with a distinctive pattern of target-cell specificity. Studies performed in cell culture suggested that KGF was mitogenically active only on epithelial cells, albeit from a variety of tissues. In contrast, KGF was produced solely by cells of mesenchymal origin, leading to the hypothesis that it might function as a paracrine mediator of mesenchymal-epithelial communication. Biochemical analysis and molecular cloning established that the KGF receptor (KGFR) was a tyrosine kinase isoform encoded by the fgfr-2 gene. Many detailed investigations of KGF and KGFR expression in whole tissue and cell lines largely substantiated the pattern initially perceived in vitro of mesenchymal and epithelial distribution, respectively. Moreover, functional assays in organ culture and in vivo and studies of KGF regulation by sex sterorid hormones reinforced the idea that KGF acts predominantly on epithelial cells to elicit a variety of responses including proliferation, migration and morphogenesis. 相似文献
6.
7.
auf demKeller U Krampert M Kümin A Braun S Werner S 《European journal of cell biology》2004,83(11-12):607-612
Keratinocyte growth factor (KGF) is a potent and specific mitogen for different types of epithelial cells, and it can protect these cells from various insults. Due to these properties, it is of particular importance for the repair of injured epithelial tissues, and it is currently therapeutically explored for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage in cancer patients. In this review we summarize the current knowledge on the role of KGF in tissue repair and cytoprotection, and we report on its mechanisms of action in keratinocytes. 相似文献
8.
A nonmitogenic analogue of epidermal growth factor induces early responses mediated by epidermal growth factor 总被引:6,自引:0,他引:6 下载免费PDF全文
Cyanogen bromide-cleaved epidermal growth factor (CNBr-EGF) binds to EGF receptors with reduced affinity compared to the native hormone but fails to induce DNA synthesis. However, at similar receptor occupancy, CNBr-EGF is as potent as EGF in activating early cell responses to the hormone. The phosphorylation of membrane proteins, the stimulation of Na+-K+-ATPase as reflected by the ouabain-sensitive uptake of 86Rb of fibroblasts, changes in the organization of microfilaments and in cell-morphology, and the activation of the enzyme ornithine-decarboxylase are all induced by CNBr-EGF as well as EGF Our results are consistent with the notion that EGF-induced phosphorylation could act as a "second messenger" for the action of various EGF-induced responses such as activation of Na+-K+-ATPase, changes in the cytoskeleton and cell morphology, and the activation of the enzyme ornithine decarboxylase. However, the stimulation of phosphorylation of membrane proteins and other early responses are either not required or necessary but insufficient for the induction of DNA synthesis. Suboptimal concentrations of EGF together with CNBr-EGF stimulate DNA synthesis in human fibroblasts. Other growth factors such as insulin, fibroblast growth factor, and prostaglandin F2 alpha, which potentiate the mitogenic response of EGF, do not effect the response to CNBr-EGF. This suggests that the restoration of the mitogenic properties of CNBr-EGF by suboptimal doses of EGF occurs at the level of EGF receptors or during their processing. 相似文献
9.
A variety of cytokines have been detected in inflamed intestinal mucosal tissues, including the pro-inflammatory cytokine, interleukin-1 (IL-1), along with growth factors involved in wound healing processes such as proliferation and cell migration. However, little is known about how IL-1 and growth factors interact with intestinal epithelial cells to regulate the production of inflammatory cytokines such as interleukin-8 (IL-8). Previously, we have shown that hepatocyte growth factor (HGF) could significantly enhance IL-1-stimulated IL-8 secretion by the Caco-2 colonic epithelial cell line, yet HGF, by itself, did not stimulate IL-8 secretion. In this report, a second growth factor, keratinocyte growth factor (KGF), was also found to significantly enhance IL-1-induced IL-8 secretion by Caco-2 cells, yet KGF, by itself, also had no effect. Simultaneous addition of both IL-1 and KGF was also required for the enhancing effect. Treatment of the Caco-2 cells with wortmannin or triciribine suppressed the enhancing effect of HGF, suggesting that the effect was mediated by signaling through phosphatidylinositol-3-kinase (PI3K) and the kinase AKT. The enhancing effect of KGF was not affected by wortmannin, but was suppressed by triciribine, suggesting that the effect of KGF was through a PI3K-independent activation of AKT. These results suggest that the growth factors HGF and KGF may play a role in enhancing IL-1-stimulated production of IL-8 by epithelial cells during mucosal inflammations. However, the mechanism by which the growth factors enhance the IL-1 response may be through different initial signaling pathways. 相似文献
10.
11.
Wu H Suzuki T Carey B Trapnell BC McCormack FX 《The Journal of biological chemistry》2011,286(17):14932-14940
Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of insults. In this study, we tested the hypothesis that KGF augments pulmonary host defense. We found that a single dose of intrapulmonary KGF enhanced the clearance of Escherichia coli or Pseudomonas aeruginosa instilled into the lungs 24 h later. KGF augmented the recruitment, phagocytic activity, and oxidant responses of alveolar macrophages, including lipopolysaccharide-stimulated nitric oxide release and zymosan-induced superoxide production. Less robust alveolar macrophage recruitment and activation was observed in mice treated with intraperitoneal KGF. KGF treatment was associated with increased levels of MIP1γ, LIX, VCAM, IGFBP-6, and GM-CSF in the bronchoalveolar lavage fluid. Of these, only GM-CSF recapitulated in vitro the macrophage activation phenotype seen in the KGF-treated animals. The KGF-stimulated increase in GM-CSF levels in lung tissue and alveolar lining fluid arose from the epithelium, peaked within 1 h, and was associated with STAT5 phosphorylation in alveolar macrophages, consistent with epithelium-driven paracrine activation of macrophage signaling through the KGF receptor/GM-CSF/GM-CSF receptor/JAK-STAT axis. Enhanced bacterial clearance did not occur in response to KGF administration in GM-CSF(-/-) mice, or in mice treated with a neutralizing antibody to GM-CSF. We conclude that KGF enhances alveolar host defense through GM-CSF-stimulated macrophage activation. KGF administration may constitute a promising therapeutic strategy to augment innate immune defenses in refractory pulmonary infections. 相似文献
12.
13.
Driscoll B Buckley S Bui KC Anderson KD Warburton D 《American journal of physiology. Lung cellular and molecular physiology》2000,279(6):L1191-L1198
Telomerase expression and activity were examined in the developing lung and in the adult lung during repair after injury. Both whole lung tissue and primary cultures of type 2 alveolar epithelial cells (AEC2) isolated from fetal and adult rodents were analyzed for 1) telomerase expression by immunohistochemistry and 2) telomerase activity with a telomerase repeat amplification protocol. We found that telomerase was expressed in a temporally regulated manner in fetal lung through the late stages of gestation, with peak expression just before birth. Expression persisted for a brief period in neonates, then decreased to nearly undetectable levels by postnatal day 9. Telomerase expression and activity were reinduced in normally quiescent adult lung by in vivo treatment with hyperoxia. In populations of AEC2 isolated from both developing and repairing lungs, telomerase expression and activity showed a strong correlation with the proliferation marker proliferating cell nuclear antigen. It has been suggested that telomerase expression and activity are hallmarks of stem or progenitor cells. Our observations suggest that a telomerase-positive subpopulation is present within the general AEC2 population. Telomerase may act as a marker for the proliferative status of this subpopulation. 相似文献
14.
15.
Background
Chronic alcohol abuse causes oxidative stress and impairs alveolar epithelial barrier integrity, thereby rendering the lung susceptible to acute edematous injury. Experimentally, alcohol-induced oxidative stress increases the expression of transforming growth factor β1 (TGFβ1) in the lung; however, we do not know the precise contribution of various alveolar cells in this process. In the present study, we focused on cell-cell interactions between alveolar macrophages and epithelial cells and the potential mechanisms by which TGFβ1 may become activated in the alveolar space of the alcoholic lung.Methods
Primary alveolar macrophages and epithelial cells were isolated from control- and alcohol-fed Sprague–Dawley rats. Expression of TGFβ1 and the epithelial integrin αvβ6 were examined by real time PCR and either immunocytochemistry or flow cytometry. Alveolar epithelial cells were cultured on transwell supports in the presence of macrophage cell lysate from control- or alcohol-fed rats or in the presence of viable macrophages ± alcohol. Epithelial barrier function was assessed by transepithelial resistance (TER) and paracellular flux of Texas Red dextran.Results
TGFβ1 expression was increased in alveolar macrophages from alcohol-fed rats, and TGFβ1 protein was predominantly membrane-bound. Importantly, alveolar macrophage cellular lysate from alcohol-fed rats decreased TER and increased paracellular dextran flux in primary alveolar epithelial cell monolayers as compared to the lysates from control-fed rats. Alcohol-induced epithelial barrier dysfunction was prevented by anti-TGFβ1 antibody treatment, indicating the presence of bioactive TGFβ1 in the macrophage lysate. In addition, co-culturing macrophages and epithelial cells in the presence of alcohol decreased epithelial barrier function, which also was prevented by anti-TGFβ1 and anti-αvβ6 treatment. In parallel, chronic alcohol ingestion in vivo, or direct treatment with active TGFβ1 in vitro, increased the expression of αvβ6 integrin, which is known to activate TGFβ1, in alveolar epithelial cells.Conclusions
Taken together, these data suggest that interactions between alveolar epithelial cells and macrophages contribute to the alcohol-mediated disruption of epithelial barrier function via the expression and activation of TGFβ1 at points of cell-cell contact. 相似文献16.
Bao S Wang Y Sweeney P Chaudhuri A Doseff AI Marsh CB Knoell DL 《American journal of physiology. Lung cellular and molecular physiology》2005,288(1):L36-L42
Acute respiratory distress syndrome (ARDS) is a syndrome characterized by the rapid influx of protein-rich edema fluid into the air spaces. The magnitude of alveolar epithelial cell injury is a key determinant of disease severity and an important predictor of patient outcome. The alveolar epithelium is positioned at the interface of the host response in the initiation, progression, and recovery phase of the disease. Keratinocyte growth factor (KGF) is a potent survival factor unique to the epithelium that promotes lung epithelial cell survival, accelerates wound closure, and reduces fibrosis. We therefore hypothesized that KGF preserves lung function by inhibiting apoptosis through activation of a signal transduction pathway responsible for cell survival. To test this hypothesis we determined that KGF inhibits death following Fas activation, a relevant apoptosis pathway, and then determined that cell survival is mediated through activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt kinase signal transduction pathway. We found that KGF induces a dose- and time-dependent increase in Akt kinase activity and that, as expected, activation of Akt via KGF is PI3K dependent. KGF inhibited Fas-induced apoptosis as measured by a reduction in apoptotic cells and caspase-3 activity. This investigation supports our original hypothesis that KGF protects the lung epithelium by inhibiting apoptosis and that protection occurs through activation of PI3K/Akt-mediated cell survival pathway. Our results are in agreement with other reports that identify the PI3K/Akt axis as a key intracellular pathway in the lung epithelium that may serve as a therapeutic target to preserve epithelial integrity during inflammation. 相似文献
17.
Keratinocyte growth factor: expression by endometrial epithelia of the porcine uterus 总被引:1,自引:0,他引:1
Keratinocyte growth factor/fibroblast growth factor-7 (KGF/FGF-7) is an established paracrine mediator of hormone-regulated epithelial growth and differentiation. In all organs studied, KGF is uniquely expressed in cells of mesenchymal origin. To determine whether KGF and its receptor, keratinocyte growth factor receptor (KGFR) or fibroblast growth factor receptor-2IIIb, were expressed in the porcine uterus as a potential paracrine system mediating progesterone action, we cloned KGF and KGFR partial cDNAs from the porcine endometrium. KGF and KGFR expression was detected in endometrium by Northern blot hybridization. Interestingly, in situ hybridization results demonstrated that KGF was expressed by endometrial epithelia and was particularly abundant between Days 12 and 15 of the estrous cycle and pregnancy. KGF secretion into the lumen of the porcine uterus was also detected on Day 12 of the estrous cycle and pregnancy. KGFR was expressed in both endometrial epithelia and conceptus trophectoderm. These novel findings suggest that KGF may act on the uterine endometrial epithelium in an autocrine manner and on the conceptus trophectoderm in a paracrine manner in the pig, which is the only species possessing a true epitheliochorial type of placentation. 相似文献
18.
BACKGROUND: Helicobacter pylori survives and proliferates in the human gastric mucosa. In this niche, H. pylori adheres to the gastric epithelial cells near the tight junctions. In vitro, H. pylori proliferated well in tissue-culture medium near gastric epithelial cells. However, in the absence of epithelial cells, growth of H. pylori could only be established in tissue-culture medium when, prior to the experiment, it was preincubated near gastric epithelial cells. Therefore, we aimed to determine whether diffusion of nutrients derived from epithelial cells was required for H. pylori growth in Dulbecco's modified Eagle's minimal essential medium (DMEM) cell culture medium. MATERIALS AND METHODS: Cell culture conditions essential for H. pylori growth in vitro were determined with gastric epithelial HM02 cells. RESULTS: Deprivation of iron in cell-culture-conditioned DMEM resulted in a growth arrest of H. pylori. However, near gastric epithelial cells, growth of H. pylori was resistant to iron deprivation. Evidently, when residing close to epithelial cells, H. pylori was able to fulfil its iron requirements, even when the DMEM was deprived of iron. Nevertheless, supplementation with iron alone did not restore H. pylori growth in DMEM, hence other nutrients were deficient as well in the absence of epithelial cells. Growth of H. pylori in DMEM was restored when hypoxanthine, L-alanine and L-proline were added to the DMEM. CONCLUSIONS: Diffusion of (precursors of) these nutrients from the gastric epithelial cells is essential for H. pylori growth in vitro. We hypothesize that in vivo, H. pylori favors colonization near the tight junctions, to gain maximal access to the nutrient(s) released by gastric epithelial cells. 相似文献
19.
Viget NB Guery BP Ader F Nevière R Alfandari S Creuzy C Roussel-Delvallez M Foucher C Mason CM Beaucaire G Pittet JF 《American journal of physiology. Lung cellular and molecular physiology》2000,279(6):L1199-L1209
We have previously reported that keratinocyte growth factor (KGF) attenuates alpha-naphthylthiourea-induced lung injury by upregulating alveolar fluid transport. The objective of this study was to determine the effect of KGF pretreatment in Pseudomonas aeruginosa pneumonia. A 5% bovine albumin solution with 1 microCi of (125)I-labeled human albumin was instilled into the air spaces 4 or 24 h after intratracheal instillation of P. aeruginosa, and the concentration of unlabeled and labeled proteins in the distal air spaces over 1 h was used as an index of net alveolar fluid clearance. Alveolocapillary barrier permeability was evaluated with an intravascular injection of 1 microCi of (131)I-albumin. In early pneumonia, KGF increased lung liquid clearance (LLC) compared with that in nonpretreated animals. In late pneumonia, LLC was significantly reduced in the absence of KGF but increased above the control value with KGF. KGF pretreatment increased the number of polymorphonuclear cells recovered in the bronchoalveolar lavage fluid and decreased bacterial pulmonary translocation. In conclusion, KGF restores normal alveolar epithelial fluid transport during the acute phase of P. aeruginosa pneumonia and LLC in early and late pneumonia. Host response is also improved as shown by the increase in the alveolar cellular response and the decrease in pulmonary translocation of bacteria. 相似文献
20.
Khondoker M Akram Sohel Samad Monica A Spiteri Nicholas R Forsyth 《Respiratory research》2013,14(1):9