首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Retinylmonophosphatase (RMPase) activity in mouse brain paralleled the subcellular distribution of the plasma-membrane marker Na+ + K+-dependent ATPase. The enzyme had a pH optimum between 5.5 and 7.0. The enzyme demonstrated linear kinetics with respect to time and both protein and substrate concentrations. RMPase was saturated by low retinyl monophosphate (RMP) concentrations and exhibited an apparent Km of 4.6 microM. The enzyme did not require MgCl2 for activity, and in fact assays were routinely run in the presence of 10 mM-Na2EDTA. In general, detergents inhibited the enzyme, with 0.05% Triton X-100 causing a 30% loss of activity. Phosphatidic acid was also inhibitory, but phosphatidylcholine and sphingomyelin stimulated phosphatase activity. RMPase was inhibited 35% by 5 mM concentrations of fluoride, phosphate or pyrophosphate. A series of other phosphorylated compounds, including glucose 6-phosphate, alpha-glycerophosphate, ATP, AMP, p-nitrophenyl phosphate and thiamin pyrophosphate, showed little or no inhibition. RMPase activity differed in several characteristics from that previously reported for dolichylmonophosphatase. It is concluded that RMP could play a distinct role in the plasma membrane.  相似文献   

2.
1. Alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) in guinea pig thymus was extracted optimally in 10 mM Tris - HCl buffer at pH 8.0 containing 5 g/l Triton X-100. 2. alpha-Glycerophosphate, beta-glycerophosphate and phenolphthalein monophosphate were hydrolyzed by thymus extract with a pH optimum at 9.8-10.0, whereas p-nitrophenylphosphate and alpha-naphthylphosphate were hydrolyzed with pH optima at 10.7-10.8 and beta-naphthylphosphate at pH 11.2. P-Nitrophenylphosphate and phenolphthalein monophosphate proved to be the most suitable substrates. 3. Alkaline phosphatase was effectively inhibited by EDTA, Zn2+, histidine and urea therefore resembling the inhibition characteristics of alkaline phosphatase in the placenta and kidney, but not that in the liver and intestine, which differed markedly. 4. DEAE-cellulose chromatography and polyacrylamide disc electrophoresis revealed three enzyme peaks which did not differ in their substrate specificities and modifier characteristics. 5. Polyacrylamide disc electrophoresis of thymus, serum, placenta, kidney, liver, bone and intestine revealed no alkaline phosphatase bands definitely unique to thymus.  相似文献   

3.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

4.
Nucleotides, e.g. ATP and ADP, are important signaling molecules, which elicit several biological responses. The degradation of nucleotides is catalyzed by a family of enzymes called NTPDases (nucleoside triphosphate diphosphohydrolases). The present study reports the enzymatic properties of a NTPDase (CD39, apyrase, ATP diphosphohydrolase) in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP hydrolysis in a pH range of 7.5-8.0 in the presence of Ca(2+) (5 mM). The enzyme displayed a maximal activity for ATP and ADP hydrolysis at 37 degrees C. It was able to hydrolyze purine and pyrimidine nucleosides 5'-di and triphosphates, being insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (0.1 mM). A significant inhibition of ATP and ADP hydrolysis (68% and 34%, respectively) was observed in the presence of 20 mM sodium azide, used as a possible inhibitor of ATP diphosphohydrolase. Levamisole (1 mM) and tetramisole (1 mM), specific inhibitors of alkaline phosphatase and P1, P(5)-di (adenosine 5'-) pentaphosphate, an inhibitor of adenylate kinase did not alter the enzyme activity. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in central nervous system of this specie.  相似文献   

5.
Suspensions of intact, yeast-like cells of Sporothrix schenckii exhibited an acid phosphatase (EC 3.1.3.2) activity against p-nitrophenyl phosphate of about 5 IU (g dry wt)-1, without recourse to membrane perturbation. This extra-cytoplasmic acid phosphatase was reversibly and competitively inhibited by orthophosphate (Ki = 2 mM at pH 5) but unaffected by L(+)-tartrate (in contradistinction to some of the cytoplasmic acid phosphatases of the same organism). Inactivation by NaF of the extra-cytoplasmic isoenzyme was irreversible and followed first order kinetics; sensitivity to NaF was decreased by the presence of citrate, phosphate or substrate. Neither Km (0.3 mM at pH 5) nor Vmax for this enzyme in acetate buffer was greatly affected by pH in the range 3-5 but the first order rate constant for inactivation by NaF was strongly dependent on pH (maximum at pH 3.5). Crude cell-free extracts of yeast cells had nine electrophoretically distinct acid phosphatase activity bands and, on the basis of the pattern of inhibitors, the extra-cytoplasmic activity was identified as Y-I, an isoenzyme that barely penetrates standard polyacrylamide gel electropherograms. Additional evidence for the assignment came from selective inactivation of this isoenzyme by short treatments of intact cells with NaF under conditions that did not allow penetration of the plasma membrane by the inhibitor and did not kill the cells.  相似文献   

6.
A kinetic study of the inhibition of several alkaline phosphatase (AP isoenzyme activities by phenobarbital was carried out using p-nitrophenylphosphate (10 mM) as a substrate at pH 9.8 in a 300-mM Hepes buffer. AP from bovine kidney, calf intestine, bovine liver, and rat bone was used. Over a phenobarbital concentration range of 20-400 mM, all these isoenzymes were inhibited in an uncompetitive manner with a Ki of 200 mM for intestinal AP, and in a linear mixed-type manner for all the other isoenzymes tested. The Ki values were 10, 40 and 55 mM for kidney, bone and liver AP, respectively. The use of 15 mM carbonate-bicarbonate or 400 mM diethanolamine buffer did not modify the degree of inhibition of intestinal AP activity. Dixon plots of the reciprocal of reaction velocity versus inhibitor concentration either at different substrate concentration or at different DEA concentration indicate uncompetitive inhibition for the intestinal enzyme. This in vitro inhibitory effect of phenobarbital is in contrast to its in vivo stimulating action on AP. However, in the whole animal, the effects of phenobarbital administration probably represent the sum of multiple effects.  相似文献   

7.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   

8.
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 μM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and streate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59±3%, S.E.) and kidney (76±3%), with considerably lower overall activity in kidney (57–375 nmol/h per g of tissue) than in liver (394–1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 μg/dl, and of liver vitamin A concentrations from 0 to 32 μg/g. Pig liver retinyl ester hydrolase from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

9.
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.  相似文献   

10.
A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.  相似文献   

11.
A series of polyprenols, ranging in length from 15 to 22 isoprene units, has been isolated from soya beans (Glycine max) and purified by high-pressure liquid chromatography. N.m.r., i.r. and mass spectra of the compounds indicated that they are alpha-saturated polyprenols of the dolichol type. The amount present in dry seeds was about 9 mg/100 g, whereas dolichyl phosphate (Dol-P) was present only in trace amounts. Dol-P phosphatase activity was detected in the microsomal fraction of 5-day-old germinating soya-bean cotyledons. The Dol-P phosphatase activity was linear with respect to time and protein concentration and exhibited a broad pH optimum (pH 7-9). Triton X-100 was necessary for significant enzyme activity. Enzyme activity was slightly enhanced by EDTA, whereas dithiothreitol was without effect. An apparent Km of 5 microM was determined for Dol-P. Bivalent metal ions were not required for enzyme activity. A number of phosphorylated compounds tested as enzyme substrates (including a number of nucleoside phosphates, glucose 6-phosphate, sodium beta-glycerophosphate and Na4P2O7) did not compete with [1-3H]Dol-P as substrate. A number of phospholipids were also tested for their ability to act as Dol-P phosphatase substrates. At 1 mM concentration, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and lysophosphatidic acid each inhibited enzymic activity. However, at 0.1 mM concentration, phosphatidylcholine and phosphatidylethanolamine were slightly stimulatory, whereas phosphatidic acid and lysophosphatidic acid were still inhibitory. Phosphatidic acid showed competitive inhibition.  相似文献   

12.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

13.
The development of a reliable assay for human synovial fluid phospholipase A2 (HSF PLA2) is important for the kinetic characterization of the enzyme and for the identification of enzyme inhibitors. This enzyme behaves differently from other extracellular PLA2s in many standard phospholipase assays and is generally assayed using radiolabeled, autoclaved Escherichia coli as a substrate. We have now developed a nonradioactive, continuous, spectrophotometric assay for this enzyme that is adaptable for use with a microtiterplate reader and is suitable for screening enzyme inhibitors. The assay uses a thioester derivative of diheptanoyl phosphatidylcholine as a substrate, with which the enzyme displays a specific activity of about 25 mumol min-1 mg-1. The substrate concentration curve fits a Hill equation with an apparent Km of 500 microM and a Hill coefficient of two. The enzyme has a pH optimum of 7.5 in this assay and requires about 10 mM Ca2+ for maximal activity. The presence of 0.3 mM Triton X-100 was necessary to solubilize the substrate; however, higher concentrations of the detergent inhibited enzyme activity. Using this spectrophotometric assay, inhibition of HSF PLA2 by a thioether phosphonate phosphatidylethanolamine analog was observed with an IC50 of 18 microM.  相似文献   

14.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

15.
Kinetic studies with substrate analogs and group-directed chemical modification agents were carried out for the purpose of identifying the enzyme-substrate interactions required for phosphonoacetaldehyde (P-Ald) binding and catalyzed hydrolysis by P-Ald hydrolase (phosphonatase). Malonic semialdehyde (Ki = 1.6 mM), phosphonoacetate (Ki = 10 mM), phosphonoethanol (Ki = 10 mM), and fluorophosphate (Ki = 20 mM) were found to be competitive inhibitors of the enzyme but not substrates. Thiophosphonoacetaldehyde and acetonyl phosphonate underwent phosphonatase-catalyzed hydrolysis but at 20-fold and 140-fold slower rates, respectively, than did P-Ald. In the presence of NaBH4, acetonyl-phosphonate inactivated phosphonatase at a rate exceeding that of its turnover. Sequence analysis of the radiolabeled tryptic peptide generated from [3-3H]acetonylphosphonate/NaBH4-treated phosphonatase revealed that Schiff base formation had occurred with the catalytic lysine. From the Vm/Km and Vm pH profiles for phosphonatase-catalyzed P-Ald hydrolysis, an optimal pH range of 6-8 was defined for substrate binding and catalysis. The pH dependence of inactivation by acetylation of the active site lysine with acetic anhydride and 2,4-dinitrophenyl acetate evidenced protonation of the active site lysine residue as the cause for activity loss below pH 6. The pH dependence of inactivation of an active site cysteine residue with methyl methanethiol-sulfonate indicated that deprotonation of this residue may be the cause for the loss of enzyme activity above pH 8.  相似文献   

16.
Optimal assay conditions for analyses of the catalytic subunit activity of the cyclic AMP-dependent protein kinase using a well-defined, commercially available synthetic peptide as the phosphate acceptor are defined. Activity of purified catalytic subunit toward the synthetic peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (PK-1; Kemptide) was 1.5- to 45-fold greater than activity toward other commonly used substrates such as histone fractions, casein, and protamine. The effects of buffer, pH, Mg2+, and protein kinase concentration on activity toward PK-1 were investigated. The optimal assay conditions determined were as follows: 20 mM Hepes or phosphate buffer, pH 7.5, 100 microM PK-1, 100 microM [gamma-32P]ATP, 3 mM MgCl2, 12 mM KCl, and 20-200 ng of catalytic subunit assayed at 30 degrees C. Since PK-1 is the only commercially available, well-defined substrate for this enzyme, adaption of the proposed standard assay conditions for the analyses of purified catalytic subunit activity will permit direct comparison of kinetic parameters and purity of enzyme preparations from multiple preparations.  相似文献   

17.
The hydrolysis of ascorbate mono-, tri- and polyphosphates by trout intestinal alkaline phosphatase was examined. Km values were established as 1.19, 4.1 and 3.7 mM, respectively. The enzyme catalyzed ascorbate triphosphate hydrolysis with 60% efficiency of that for ascorbate monophosphate. With the Km value of 1.19 mM for ascorbate monophosphate the trout enzyme exhibits similar affinity with this substrate as with p-nitrophenyl phosphate (1.00–1.67 mM). Two Km values for micro- and millimolar ranges of ascorbate monophosphate concentrations ranges were calculated as: 27.9 μM and 1.19 mM, respectively. Specific intestinal alkaline phosphatase inhibitor L-phenylalanine (100 mM), inhibited reaction rate by 20% in 10 min. We conclude that alkaline phosphatase, which is in a great abundance in the trout intestine, serves as ascorbate esters hydrolase, thus releasing active ascorbic acid into circulation.  相似文献   

18.
Human platelets have been shown to contain the enzyme glycoprotein:galactosyltransferase that catalyzes the transfer of galactose to an endogenous protein acceptor present in the platelet. Galactosylation of added ovalbumin also occurs. The activity was extracted with 30 mM Tris buffer (pH 7.5). The endogenous activity was enriched 1.4-fold (compared with the crude homogenate) in the fraction, 105,000 g pellet, and the exogenous enzyme was retained in the respective supernatant. The two galactosyltransferase activities showed proportionality to time, protein, and substrate concentration, and were identical in pH dependence and Mn+2 requirement. The effect of Triton X-100 (range 0-1.5%) in the assay system appeared to be different for both activities: with the optimum concentration of detergent (0.15%) the endogenous activity increased by 50% whereas the exogenous activity was augmented 5-fold. From a number of sugar nucleotides tested as glycosyl donor into the endogenous proteins, the optimum substrate was UDP-Glc (100%), followed by UDP-Gal (80%), GDP-Man (24%), UDP-Glc-NAc (21%), UDP-Xyl (19%), and ADP-Glc (5%). An appropriate exogenous acceptor for UDP-Glc as donor was not found. The different solubilization of galactosyl- and glucosyltransferase activities by Triton X-100 suggests that they are distinct enzymes. In addition, the exogenous galactosyltransferase activity achieved after the treatment was much higher (940%) than the endogenous (26%). It is suggested that these differences on both galactosyltransferases could reflect changes in the accessibility of the exogenous substrate to the enzyme.  相似文献   

19.
Alcohol dehydrogenase [EC 1.1.1.1] was purified to homogeneity from rabbit liver by water extraction, DEAE-cellulose treatment, affinity chromatography on 5'-AMP-Sepharose and gel filtration on Sephadex G-150 using dithiothreitol as a stabilizer. The purified enzyme has an estimated molecular weight of 72,000 and consists of two subunits with a molecular weight of about 36,000 each. The enzyme contains 4 g-atoms of zinc and 18 sulfhydryl groups per mol of protein and exhibits maximal activity at pH 10.8, with a second maximum at pH 7.5. The apparent Km values for ethanol and NAD+ are 0.45 mM and 53.19 microM, respectively, at pH 10.8 and 3.33 mM and 6.94 microM, respectively, at pH 7.5. The enzyme oxidizes ethanol most readily among the aliphatic alcohols studied and has very low substrate specificity for methanol. Among steroid alcohols, 5 beta-androstan-3 beta-ol-17-one serves as a substrate for the enzyme. Pyrazole and 4-methylpyrazole (which are well known alcohol dehydrogenase inhibitors), sulfhydryl reagents, heavy metal ions and metal-chelating agents inactivate the enzyme.  相似文献   

20.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2- is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号