首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol uptake and the mechanisms that regulate cholesterol translocation from the intestinal lumen into enterocytes remain for the most part unclear. Since scavenger receptor class B type I (SR-BI) has been suggested to play a role in cholesterol absorption, we investigated cellular SR-BI modulation by various potential effectors administered in both apical and basolateral sides of Caco-2 cells. With differentiation, Caco-2 cells increased SR-BI protein expression. Western blot analysis showed the ability of cholesterol and oxysterols in both cell compartments to reduce SR-BI protein expression. Among the n-3, n-6, and n-9 fatty acid families, only eicosapentaenoic acid was able to lower SR-BI protein expression on both sides, whereas apical alpha-linolenic acid decreased SR-BI abundance and basolateral arachidonic acid (AA) raised it. Epidermal growth factor and growth hormone, either in the apical or basolateral medium, diminished SR-BI cellular content, while insulin displayed the same effect only on the basolateral side. In the presence of proinflammatory agents (LPS, TNF-alpha, IFN-gamma), Caco-2 cells exhibited differential behavior. SR-BI was downregulated by lipopolysaccharide on both sides. Finally, WY-14643 fibrate diminished SR-BI protein expression when it was added to the apical medium. Biotinylation studies in response to selected stimuli revealed that regulatory modifications in SR-BI protein expression occurred for the most part at the apical cell surface irrespective of the effector location. Our data indicate that various effectors supplied to the apical and basolateral compartments may impact on SR-BI at the apical membrane, thus suggesting potential regulation of intestinal cholesterol absorption and distribution in various intracellular pools.  相似文献   

2.
SR-BI的分子结构及其表达调控   总被引:1,自引:0,他引:1  
小鼠B族Ⅰ型清道夫受体是目前已确认的唯一真正介导细胞与高密度脂蛋白作用的膜受体,主要在肝脏和固醇生成组织中表达,并受促激素、胆固醇、饮食以及药理等因素所调控。该受体介导高密度脂蛋白-胆固醇酯的选择性吸收,是调节胆固醇逆转运的唯一靶点,在高密度脂蛋白代谢和胆固醇运输中起重要作用。该基因缺陷对不同的组织具有不同的影响。它有可能作为一个新的治疗靶点来预防和治疗动脉粥样硬化性心脑血管疾病。对其分子结构、表达调控及相关研究作了详细介绍。  相似文献   

3.
高密度脂蛋白受体(SR-BI)和胆固醇逆转运   总被引:1,自引:0,他引:1  
近十几年来对小鼠的B类I型清道夫受体(SRBI)的研究,发现它是一种高亲和力的高密度脂蛋白受体,主要在肝脏和类固醇源性组织中表达。该受体能介导胆固醇酯的选择性吸收,在高密度脂蛋白(HDL)的代谢和胆固醇的“逆转运”中起重要作用。动物实验证明SRBI的表达可减少动脉粥样硬化的发生。如果SRBI对人有相似的作用,它将成为一个好的作用靶点用于临床心脑血管疾病的治疗 。  相似文献   

4.
The scavenger receptor class B, type I (SR-BI) is an HDL receptor that mediates selective cholesterol uptake from HDL to cells. In rodents, SR-BI has a critical influence on plasma HDL-cholesterol concentration and structure, the delivery of cholesterol to steroidogenic tissues, female fertility, and biliary cholesterol concentration. SR-BI can also serve as a receptor for non-HDL lipoproteins and appears to play an important role in reverse cholesterol transport. Recent studies involving the manipulation of SR-BI expression in mice, either using adenovirus-mediated or transgenic hepatic overexpression or using homologous recombination for complete functional ablation, indicate that the expression of SR-BI protects against atherosclerosis. If SR-BI has a similar activity in humans, it may become an attractive target for therapeutic intervention.  相似文献   

5.
The HDL receptor scavenger receptor class B type I (SR-BI), which mediates selective HDL cholesterol uptake, plays a role in murine HDL metabolism, reverse cholesterol transport and whole-body cholesterol homeostasis. SR-BI is found in the liver, where its expression is regulated by estrogen, dietary cholesterol and fat, and controls murine plasma HDL cholesterol levels and bile cholesterol secretion. SR-BI is also highly expressed in rodent steroidogenic cells, where it facilitates cholesterol uptake for storage or steroid hormone synthesis and where its expression is regulated by trophic hormones. The detailed mechanism(s) underlying SR-BI-mediated selective cholesterol uptake have not yet been elucidated. Further analysis of the molecular and cellular bases of SR-BI regulation and function should provide new insights into the physiology and pathophysiology of cholesterol metabolism.  相似文献   

6.
Scavenger receptor class B type I localizes to a late endosomal compartment   总被引:1,自引:0,他引:1  
Scavenger receptor class B type I (SR-BI) has an established role in mediating the selective uptake of cholesterol from HDL in hepatocytes, steroidogenic cells, and other tissues. SR-BI is present on the plasma membrane but also localizes to stable intracellular compartments of unknown function. Using indirect immunofluorescence and subcellular fractionation, we have investigated the subcellular distribution of SR-BI. We report that red fluorescent protein-tagged mouse SR-BI (RFP-mSR-BI) colocalizes with the late endosomal and lysosomal markers, Rab7, LBPA, and Rab9. In addition, endogenous SR-BI is also found on lysosomes and colocalizes with LAMP-2 in primary hepatocytes. Furthermore, we demonstrate that the trafficking of SR-BI through these compartments is Rab7 dependent. Interestingly, filipin staining indicates accumulation of lysosomal cholesterol in SR-BI-deficient ((-/-)) as compared with wild-type hepatocytes. In addition to its role as a plasma membrane receptor, SR-BI may function in cholesterol trafficking from late endosomes/lysosomes.  相似文献   

7.
The scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesterol and cholesteryl ester (CE) from high density lipoprotein (HDL) into cells. The high expression in liver and steroidogenic tissues is compatible with a role of SR-BI in reverse cholesterol transport and steroid hormone synthesis. Ways of regulation thus far described include induction by trophic hormones via cAMP-activated protein kinase A (PKA) and the effects of cellular and plasma cholesterol. Here we show that vitamin E (vitE) has a major effect on the expression of SR-BI in rat liver and in a human hepatoma-derived cell line, HepG2. Feeding rats a vitE-depleted diet resulted in an 11-fold increase in the SR-BI protein level in liver tissue. This effect was readily reversed by feeding a vitE-enriched chow. In HepG2 cells, the expression of the human SR-BI homolog was reduced when the vitE content was increased by incubating the cells with vitE-loaded HDL or with phosphatidylcholine/vitE vesicles. The downregulation of human SR-BI (hSR-BI) was accompanied by a reduced level of protein kinase C (PKC) in the particulate cell fraction, and PKC inhibition decreased the expression of hSR-BI and the uptake of vitE and cholesterol from HDL. Our results are consistent with the view that the cellular level of vitE exerts a tight control over the expression of SR-BI. Furthermore, the inhibitory effect of vitE on PKC seems to be involved in the signaling pathway.  相似文献   

8.
9.
10.
Recent studies have indicated that the scavenger receptor class B type I (SR-BI) may play an important role in the uptake of high density lipoprotein (HDL) cholesteryl ester in liver and steroidogenic tissues. To investigate the in vivo effects of liver-specific SR-BI overexpression on lipid metabolism, we created several lines of SR-BI transgenic mice with an SR-BI genomic construct where the SR-BI promoter region had been replaced by the apolipoprotein (apo)A-I promoter. The effect of constitutively increased SR-BI expression on plasma HDL and non-HDL lipoproteins and apolipoproteins was characterized. There was an inverse correlation between SR-BI expression and apoA-I and HDL cholesterol levels in transgenic mice fed either mouse chow or a diet high in fat and cholesterol. An unexpected finding in the SR-BI transgenic mice was the dramatic impact of the SR-BI transgene on non-HDL cholesterol and apoB whose levels were also inversely correlated with SR-BI expression. Consistent with the decrease in plasma HDL and non-HDL cholesterol was an accelerated clearance of HDL, non-HDL, and their major associated apolipoproteins in the transgenics compared with control animals. These in vivo studies of the effect of SR-BI overexpression on plasma lipoproteins support the previously proposed hypothesis that SR-BI accelerates the metabolism of HDL and also highlight the capacity of this receptor to participate in the metabolism of non-HDL lipoproteins.  相似文献   

11.
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress.  相似文献   

12.
13.
Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production.  相似文献   

14.
High density lipoproteins (HDL) are protective against cardiovascular disease due to their important role in the reverse cholesterol transport (RCT) pathway. The selective transfer of cholesteryl ester (CE) from the HDL core to cells, the last step in RCT, is mediated by scavenger receptor class B type I (SR-BI). SR-BI is a heavily glycosylated cell surface receptor that is highly expressed in the liver, ovaries, testes and adrenal glands, where selective uptake of HDL-CE is most prevalent. Previous studies have shown that SR-BI oligomerizes with itself in steroidogenic tissues as well as in diverse cell lines. In the present study, we provide further evidence for the homo-oligomerization of SR-BI. We show by FPLC and blue native PAGE that SR-BI forms complexes whose sizes suggest the formation of monomers, dimers, and tetramers. Interestingly, homo-oligomerization occurs even with the absence of SR-BI's C-terminal cytoplasmic domain. Finally, we report that an inhibitor of SR-BI-mediated cholesterol transport, BLT-1, and mutations in the putative leucine zipper region of SR-BI have profound effects on SR-BI function, however, they do not affect receptor self-association. These observations indicate that SR-BI homo-oligomerization occurs even when the receptor is non-functional.  相似文献   

15.
16.
High density lipoprotein (HDL) levels are inversely proportional to the risk of coronary heart disease. HDL mediates various anti-atherogenic pathways including reverse cholesterol transport from cells of the arterial wall to the liver and steroidogenic tissues. In addition HDL activates various intracellular signaling events that confer atheroprotection. The HDL receptor, scavenger receptor class B type I (SR-BI) has been implicated directly and indirectly in HDL induced signaling. The aim of this review is to summarize the role of SR-BI in HDL induced signaling in the vasculature.  相似文献   

17.
The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology.  相似文献   

18.
19.
The scavenger receptor class B type I (SR-BI), which mediates selective cellular cholesterol uptake from high-density lipoproteins (HDLs), plays a key role in reverse cholesterol transport. The orphan nuclear receptor liver receptor homolog 1 (LRH-1) and SR-BI are co-expressed in liver and ovary, suggesting that LRH-1 might control the expression of SR-BI in these tissues. LRH-1 induces human and mouse SR-BI promoter activity by binding to an LRH-1 response element in the promoter. Retroviral expression of LRH-1 robustly induces SR-BI, an effect associated with histone H3 acetylation on the SR-BI promoter. The decrease in SR-BI mRNA levels in livers of LRH-1(+/-) animals provides in vivo evidence that LRH-1 regulates SR-BI expression. Our data demonstrate that SR-BI is an LRH-1 target gene and underscore the pivotal role of LRH-1 in reverse cholesterol transport.  相似文献   

20.
Cholesterol is a key lipid in the stratum corneum, where it is critical for permeability barrier homeostasis. The epidermis is an active site of cholesterol synthesis, but inhibition of epidermal cholesterol synthesis with topically applied statins only modestly affects epidermal permeability barrier function, suggesting a possible compensatory role for extraepidermal cholesterol. Scavenger receptor class B type I (SR-BI) is a recently described cell surface receptor for high density lipoproteins (HDL) that mediates the selective uptake of cholesterol esters from circulating HDL. In the present study, we demonstrate that SR-BI is present in cultured human keratinocytes and that calcium-induced differentiation markedly decreases SR-BI levels. Additionally, the cell association of [(3)H]cholesterol-labeled HDL decreased in differentiated versus undifferentiated keratinocytes. Furthermore, the inhibition of cholesterol synthesis with simvastatin resulted in a 3-4-fold increase in both SR-BI mRNA and protein levels, whereas conversely, addition of 25-hydroxycholesterol suppressed SR-BI levels by approximately 50%. SR-BI mRNA is also expressed in murine epidermis, increasing by 50% in parallel with cholesterol requirements following acute barrier disruption. Because the increase is completely blocked by occlusion with a vapor-impermeable membrane, changes in epidermal SR-BI expression are regulated specifically by barrier requirements. Lastly, using immunofluorescence we demonstrated that SR-BI is present in human epidermis predominantly in the basal layer and increases following barrier disruption. In summary, the present study demonstrates first that SR-BI is expressed in keratinocytes and regulated by cellular cholesterol requirements, suggesting that it plays a role in keratinocyte cholesterol homeostasis. Second, the increase in SR-BI following barrier disruption suggests that SR-BI expression increases to facilitate cholesterol uptake leading to barrier restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号