首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression of myosin heavy chain (MHC) and C-protein isoforms has been examined immunocytochemically in regenerating skeletal muscles of adult chickens. Two, five, and eight days after focal freeze injury to the anterior latissimus dorsi (ALD) and posterior latissimus dorsi (PLD) muscles, cryostat sections of injured and control tissues were reacted with a series of monoclonal antibodies previously shown to specifically bind MHC or C-protein isoforms in adult or embryonic muscles. We observed that during the course of regeneration in each of these muscles there was a reproducible sequence of antigenic changes consistent with differential isoform expression for these two proteins. These isoform switches appear to be tissue specific; i.e., the isoforms of MHC and C-protein which are expressed during the regeneration of a "slow" muscle (ALD) differ from those which are synthesized in a regenerating "fast" muscle (PLD). Evidence has been obtained for the transient expression of a "fast-type" MHC and C-protein during ALD regeneration. Furthermore, during early stages of PLD regeneration this muscle contains MHCs which antigenically resemble those found in the pectoralis muscle at embryonic and early posthatch stages of development. Both regenerating muscles express an isoform of C-protein which appears immunochemically identical to that normally expressed in embryonic and adult cardiac muscle. These results support the concept that isoform transitions in regenerating skeletal muscles qualitatively resemble those found in developing muscles but differences may exist in temporal and tissue-specific patterns of gene expression.  相似文献   

2.
Monoclonal antibodies (McAbs) specific for the C-proteins of chicken pectoralis major and anterior latissimus dorsi (ALD) muscles have been produced and characterized. Antibody specificity was demonstrated by solid phase radioimmunoassay (RIA), immunoblots, and immunofluorescence cytochemistry. Both McAbs MF-1 (or MF-21) and ALD-66 bound to myofibrillar proteins of approximately 150,000 daltons; the former antibody reacted with pectoralis but not ALD myofibrils, whereas the latter recognized ALD but not pectoralis myofibrils. Chromatographic elution of the antigens from DEAE-Sephadex, and their distribution in the A-band, support the conclusion that both of these antibodies recognize variant isoforms of C-protein. Since both McAbs react with a protein of similar molecular weight in the A-band of all myofibrils of the posterior latissimus dorsi (PLD) muscle, we suggest that either another isoform of C-protein exists in the PLD muscle or both pectoralis and ALD-like isoforms coexist in the A-bands of PLD muscle.  相似文献   

3.
Monoclonal antibodies (McAbs) specific for the fast (MF-1) and slow (ALD-66) isoforms of C-protein from chicken skeletal muscle have been produced and characterized. Using these antibodies it was possible to demonstrate that skeletal muscles of varying fiber type express different isoforms of this protein and that in the posterior latissimus dorsi muscle both isoforms are co-expressed in the same myofiber (17, 18). Since we had shown that both isoforms were present in all sarcomeres, it was feasible to test whether the two isoforms co- distributed in the same 43-nm repeat within the A-band, thereby establishing a minimum number of C-proteins per repeat in the thick filaments. Here we describe the ultrastructural localization of C- protein in myofibers from three muscle types of the chicken using these same McAbs. We observed that although C-protein was present in a 43-nm repeat along the filaments in all three muscles, there were marked differences in the absolute number and position occupied by the different isoforms. Since McAbs MF-1 and ALD-66 decorated the same 43- nm repeats in the A-bands of the posterior latissimus dorsal muscle, we suggest that at least two C-proteins can co-localize at binding sites 43 nm apart along thick filaments of this muscle.  相似文献   

4.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

5.
Isoforms of C-protein in adult chickens which differ in fast (pectoralis major, PM) and slow (anterior latissimus dorsi, ALD) skeletal muscles can be distinguished immunochemically with monoclonal antibodies (McAbs) specific for the respective fast (MF-1) and slow (ALD-66) protein variants (Reinach et al., 1982 and 1983). The expression of these C-proteins during chick muscle development in vivo has been analyzed by immunoblot and immunofluorescence procedures. Neither MF-1 nor ALD-66 reacted with whole-cell lysates or myofibrils from PM of 12-day-old embryos. However, both McAbs bound to peptides of 145 kDa in PM from late embryonic and young posthatched chickens. All of the myofibers in these muscles reacted with both antibodies, but the binding of the anti-slow McAb (ALD-66) diminished progressively with age and was completely negative with PM by 2 weeks after hatching. In contrast, the ALD muscle from 17 days in ovo thru adulthood only reacted with ALD-66; no binding of MF-1 could be detected at these stages. Since both fast and slow myosin light chains (LC) coexist within embryonic pectoralis and ALD muscles (e.g., G. F. Gauthier, S. Lowey, P. A. Benfield, and A. W. Hobbs, 1982, J. Cell Biol.92, 471–484) yet segregate to specific fast and slow muscle fibers at different stages of development, the temporal transitions of C-protein and myosin LC were compared during myogenesis. “Slow-type” C-protein appeared after the disappearance of slow myosin light chains, whereas the accumulation of the “fast-type” light chains occurred before the expression of “fast-type” C-protein. The pattern of isoform transitions appears to be far more complex than previously suspected.  相似文献   

6.
To investigate whether immunocytochemical localization of muscle-specific aldolase can be used for fiber phenotype determination, we produced specific antibodies against the enzyme and studied its distribution in adult chicken skeletal muscles by indirect immunofluorescence microscopy. Monoclonal antibodies against the myosin heavy chains of fast-twitch (MF-14) and slow-tonic (ALD-58) muscle fibers were also used to correlate aldolase levels with the fiber phenotype. The goat anti-aldolase antibody was found to be specific for the A form of aldolase, as evidenced by sodium dodecyl sulfate gel electrophoresis, immunotitration experiments, and immunoblot analysis. The antibody reacted strongly with the fast-twitch myofibers of normal pectoralis and posterior latissimus dorsi muscles; the phenotype of these muscle fibers was confirmed by a positive immunofluorescent reaction after incubation with MF-14 antibody. By contrast, the slow-tonic myofibers of normal anterior latissimus dorsi, which react positively with ALD-58 antibody, reacted weakly with anti-aldolase antibodies. In denervated chicken muscles, reaction to anti-aldolase antibodies was markedly reduced in fast-twitch fibers, although reaction to MF-14 was not diminished. By contrast, in dystrophic muscle, fast-twitch fibers showed reduced reactivity to anti-aldolase and marked to moderate reduction in MF-14 reactivity. Our results show that: (a) in normal muscles, reactivity to anti-aldolase matches the phenotype obtained by using anti-fast or anti-slow myosin heavy chain antibodies, and therefore can serve to identify mature fibers as fast or slow; and (b) in denervated or dystrophic muscles, the intracellular expressions of aldolase and fast-twitch myosin heavy chains are regulated independently.  相似文献   

7.
A monoclonal antibody (C-315) specific for cardiac-type C-protein was prepared and, in combination with other antibodies specific for fast and slow skeletal muscle C-proteins, it was used to investigate the expression of C-protein isoforms in developing striated muscle cells in vivo and in vitro. During embryonic development of skeletal muscles, a C-protein recognized by C-315 appeared first but only transiently, it being replaced subsequently by two other isoforms recognized by the antibodies to slow and fast skeletal muscle C-proteins in a fiber-type specific manner as previously demonstrated (Obinata et al. (1984) Develop. Biol. 101, 116-124). In contrast, only cardiac-type C-protein was detected in cardiac muscle throughout the developmental stages. When myogenesis in vitro was monitored using the same antibodies, C-315 binding appeared first in multinucleated myotubes as in vivo which was followed by the sequential expression of two other C-protein variants. The reactivity of C-315 as well as that of anti-slow and anti-fast skeletal C-protein antibodies persisted during muscle development in culture. Thus, this study demonstrates that the earliest form of C-protein expressed in striated muscles may either be a cardiac-type isoform or a unique embryonic protein containing an epitope in common with the adult cardiac-type protein, and that transitions of C-protein isoform expression characteristic of each fiber-type occur during muscle development in vivo but not in vitro.  相似文献   

8.
Of the several proteins located within sarcomeric A-bands, C-protein, a myosin binding protein (MyBP) is thought to regulate and stabilize thick filaments during assembly. This paper reports the characterization of C-protein isoforms in juvenile and adult axolotls, Ambystoma mexicanum, by means of immunofluorescent microscopy and Western blot analyses. C-protein and myosin are found specifically within the A-bands, whereas tropomyosin and -actin are detected in the I-bands of axolotl myofibrils. The MF1 antibody prepared against the fast skeletal muscle isoform of chicken C-protein specifically recognizes a cardiac isoform (Axcard1) in juvenile and adult axolotls but does not label axolotl skeletal muscle. The ALD66 antibody, which reacts with the C-protein slow isoform in chicken, localizes only in skeletal muscle of the axolotl. This slow axolotl isoform (Axslow) displays a heterogeneous distribution in fibers of dorsalis trunci skeletal muscle. The C315 antibody against the chicken C-protein cardiac isoform identifies a second axolotl cardiac isoform (Axcard2), which is present also in axolotl skeletal muscle. No C-protein was detected in smooth muscle of the juvenile and adult axolotl with these antibodies.This work was supported by NIH grants HL-32184 and HL-37702 and a grant-in-aid from the American Heart Association to L.F.L.  相似文献   

9.
In the course of muscle differentiation, changes in fibre-type population and in myosin composition occur. In this work, the expression of native myosin isoforms in developing fast-twitch (posterior latissimus dorsi; PLD) and slow-tonic (anterior latissimus dorsi; ALD) muscles of the chick was examined using electrophoresis under nondissociating conditions. The major isomyosin of 11-day-old embryonic PLD comigrated with the adult fast myosin FM3. Two additional components indistinguishable from adult fast FM2 and FM1 isomyosins appeared successively during the embryonic development. The relative proportion of these latter isoforms increased with age, and the adult pattern was established by the end of the 1st month after hatching. Between day 11 and day 16 of embryonic development, PLD muscle fibres also contained small amounts of slow isomyosins SM1 and SM2. This synthesis of slow isoforms may be related to the presence of slow fibres within the muscle. At all embryonic and posthatch stages, ALD was composed essentially of slow isomyosins that comigrated with the two slow components SM1 and SM2 identified in adult. Several studies have reported that the SM1:SM2 ratio decreases progressively throughout embryonic and posthatching development, SM2 being predominant in the adult. In contrast, we observed a transient increase in SM1:SM2 ratio at the end of embryonic life. This could reflect a transitional neonatal stage in myosin expression. In addition, the presence in trace amounts of fast isomyosins in developing ALD muscle could be related to the presence of a population of fast fibres within this muscle.  相似文献   

10.
C-Proteins in developing, denervated, and dystrophic chicken skeletal muscles were examined by means of two-dimensional (2D) gel electrophoresis in combination with immunoblotting. In this analysis, the electrophoresis system which was devised by Hirabayashi (Anal. Biochem. 117, 443-451, 1981) provided excellent resolution; three C-protein variants, one fast-type (Cf) and two slow-types (CS3 and CS4) with different Mrs and pIs, were distinguished on a 2D gel. In the neonatal breast muscle, both Cf and CS3 were detected, but during postnatal development, CS3 disappeared from this muscle and Cf became only the C-protein isoform in the adult muscle. In posterior latissimus dorsi (PLD) muscle, both Cf and CS3 were similarly detected at the neonatal stage, but CS3 was replaced by CS4 as this muscle developed. When the breast and PLD muscles were denervated or suffered from muscular dystrophy, both CS3 and CS4 were co-expressed in these muscles in addition to Cf. These results definitely show that the C-protein isoform pattern varies during development and degeneration of chicken skeletal muscles, and in addition the dystrophic or denervated muscle differs from the neonatal muscle with regard to C-protein isoform expression. We suggest that chicken skeletal muscle degenerating due to denervation or muscular dystrophy does not simply recapture the nature of the neonatal muscle, but shifts in a somewhat different direction.  相似文献   

11.
Myoblasts from 9-day-old quail embryo slow anterior latissimus dorsi (ALD) and fast posterior and latissimus dorsi (PLD) muscles were co-cultured with neurons. The presence of neurons allowed ALD-derived muscle fibres to express characteristic features of a slow muscle (occurrence of alpha' and of beta' fibres and predominance of slow myosin light chains). On the contrary, PLD-derived fibres did not differentiate into normal fast fibres (occurrence of alpha'-like fibres and absence of LC3f). These results are compared with the differentiation of ALD and PLD myoblasts in aneural condition. It is suggested that neurons can modify some phenotypic expression of presumptive slow or fast myoblasts.  相似文献   

12.
Differentiation of slow and fast muscles in chickens   总被引:3,自引:0,他引:3  
1. The development of the characteristic histochemical appearance of the slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) was studied in chickens during embryonic development as well as during regeneration of minced muscle. 2. During embryonic development the activity of the oxidative enzyme succinic dehydrogenase (SDH) is higher in the slow ALD muscle already at 16 days of incubation. At this time the fast PLD has a higher activity of the glycolytic enzyme, phosphorylase. Although the histochemical appearance of the two types of muscle is already different at 16 days, their contractile speeds are still similar. No difference in myosin ATP-ase was found in the two muscles in young embryos but in 20-day old embryos the two muscles became distinctly different when stained for this enzyme. 3. When PLD muscles in hatched chickens redeveloped during regeneration in place of ALD the histochemical characteristics of the regenerated muscle resembled ALD, and when ALD regenerated in place of PLD it resembled PLD. 4. It is concluded that the histochemical characteristics of slow and fast muscles become determined during early development, even before any difference in contractile properties can be detected and that they are determined by the nerve.  相似文献   

13.
Slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of 9-day-old quail embryos were cultured in vitro without neurons for 1 to 12 weeks. Several differences could be observed between ALD- and PLD-derived cells. PLD cultures proliferated less rapidly than ALD cultures. ALD-derived muscle fibres exhibited wide Z lines, numerous mitochondria, and a poorly developed sarcotubular system, while PLD-derived muscle fibres exhibited narrow Z lines, few mitochondria, and an abundant sarcotubular system. Staining for myofibrillar ATPase revealed that all well-differentiated ALD-derived muscle fibres were of the beta' type, while PLD-derived fibres were of beta and beta R types. These results show that myoblasts from slow and fast muscle rudiments can express in vitro some of the characteristic features of slow and fast muscle fibres, independently of motor innervation.  相似文献   

14.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

15.
Myosin light-chain expression during avian muscle development   总被引:11,自引:7,他引:4       下载免费PDF全文
Monoclonal antibodies to adult chicken myosin light chains were generated and used to quantitate the types of myosin light-chain (MLC) isoforms expressed during development of the pectoralis major (PM), anterior latissimus dorsi (ALD), and medial adductor (MA) muscles of the chicken. These are muscles which, in the adult, are composed predominantly of fast, slow, and a mixture of fiber types, respectively. Three distinct phases of MLC expression characterized the development of the PM and MA muscles. The first identifiable pase occurred during the period of 5-7 d of incubation in ovo. Extracts of muscles from the pectoral region (which included the presumptive PM muscle) contained only fast MLC isoforms. This period of exclusive fast light-chain synthesis was followed by a phase (8- 12 d of incubation in ovo) in which coexpression of both fast and slow MLC isoforms was apparent in both PM and MA muscles. During the period, the composition of both fast and slow MLC isoforms in the PM and MA muscles was identical. Beginning at day 12 in ovo, the ALD was also subjected to immunochemical analyses. The proportion of fast and slow MLCs in this muscle at day 12 was similar to that present in the other muscles studied. The third development phase of MLC expression began at approximately 12 d of incubation in ovo and encompassed the transition in MLC composition to the isoform patterns incubation in ovo and encompassed the transition in MLC composition to the isoform patterns typical of adult muscle. During this period, the relative proportion of slow MLC rose in both the MA and ALD and fell in the PM. By day 16, the third fast light chain, LC(3f), was apparent in extracts of both the PM and MA. These results show that there is a developmental progression in the expression of MLC in the two avian muscles studied from day 5 in ovo; first, only fast MLCs are accumulated, then both fast and slow MLC isoforms are expressed. Only during the latter third of development in ovo is the final MLC isoform pattern characteristic of a particular muscle type expressed.  相似文献   

16.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

17.
Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.  相似文献   

18.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F: 55 per cent; LC2S: 25 per cent; LC2F: 12 per cent; LC1S: 8 per cent) and a common set of tropomyosin (TM) subunits (beta 2, beta 1, alpha 2F). Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the alpha 2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching. Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

19.
The effects of denervation and direct electrical stimulation upon the activity and the molecular form distribution of butyrylcholinesterase (BuChE) were studied in fast-twitch posterior latissimus dorsi (PLD) and in slow-tonic anterior latissimus dorsi (ALD) muscles of newly hatched chicken. In PLD muscle, denervation performed at day 2 substantially reduced the rate of rapid decrease of BuChE specific activity which takes place during normal development, whereas in the case of ALD muscle little change was observed. Moreover, the asymmetric forms which were dramatically reduced in denervated PLD muscle were virtually absent in denervated ALD muscle at day 14. Denervated PLD and ALD muscles were stimulated from day 4 to day 14 of age. Two patterns of stimulation were applied, either 5-Hz frequency (slow rhythm) or 40-Hz frequency (fast rhythm). Both patterns of stimulation provided the same number of impulses per day (about 61,000). In PLD muscle, electrical stimulation almost totally prevented the postdenervation loss in asymmetric forms and led to a decrease in BuChE specific activity. In ALD muscle, electrical stimulation partially prevented the asymmetric form loss which occurs after denervation. This study emphasizes the role of evoked muscle activity in the regulation of BuChE asymmetric forms in the fast PLD muscle and the differential response of denervated slow and fast muscles to electrical stimulation.  相似文献   

20.
Summary Changes of muscle weights, fiber diameters and ultrastructure were studied in the slow anterior latissimus dorsi (ALD) and in the fast posterior latissimus dorsi (PLD) of the chick three weeks after denervation and tenotomy, and after combined denervation and tenotomy of the two muscles.The slow ALD muscle becomes hypertrophic after denervation (Feng, Jung and Wu, 1962). Three weeks after nerve section, wet weights of ALD muscles are increased by 60% and fiber diameters become by 30% larger than those of contralateral control muscles. In spite of this hypertrophy, degenerative changes are seen in the ultrastructure, similar to those described in denervated atrophic muscles. Areas of dedifferentiation with autophagic vacuoles and aggregates of tubules are found in superficial layers of some fibers. Disintegration of Z lines and filaments along one or two sarcomeres occurs in a number of myofibrils, especially in muscles of young animals.In contrast to denervation alone, simultaneous denervation and tenotomy of the ALD muscles results in atrophy. Decrease of muscle weights and reduction of fiber diameters are similar as after tenotomy; in both cases muscle fibers waste by degeneration and atrophy of myofibrils.The fast PLD muscles underwent extensive atrophy in all three series of experiments. Corresponding atrophic and degenerative changes of ultrastructure were found in all instances.The authors wish to acknowledge gratefully the skillful technical assistance of Mrs. M. Sobotková and Ing. M. Doubek, and editorial assistance of Miss Virginia Hamilton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号