首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
Surface proteins of Gram-positive bacteria are covalently linked to the cell wall envelope by a mechanism requiring an N-terminal signal peptide and a C-terminal LPXTG motif sorting signal. We show here that surface proteins of Staphylococcus aureus arrive at two distinct destinations in the bacterial envelope, either distributed as a ring surrounding each cell or as discrete assembly sites. Proteins with ring-like distribution (clumping factor A (ClfA), Spa, fibronectin-binding protein B (FnbpB), serine-aspartate repeat protein C (SdrC) and SdrD) harbour signal peptides with a YSIRK/GS motif, whereas proteins directed to discrete assembly sites (S. aureus surface protein A (SasA), SasD, SasF and SasK) do not. Reciprocal exchange of signal peptides between surface proteins with (ClfA) or without the YSIRK/GS motif (SasF) directed recombinant products to the alternate destination, whereas mutations that altered only the YSIRK sequence had no effect. Our observations suggest that S. aureus distinguishes between signal peptides to address proteins to either the cell pole (signal peptides without YSIRK/GS) or the cross wall, the peptidoglycan layer that forms during cell division to separate new daughter cells (signal peptides with YISRK/GS motif).  相似文献   

2.
Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [(32)P]phosphoric acid to reveal a P3 intermediate. The (32)P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. (32)P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein.  相似文献   

3.
Surface proteins of Staphylococcus aureus are covalently linked to the bacterial cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. Cleavage between the threonine and the glycine of the LPXTG motif liberates the carboxyl of threonine to form an amide bond with the amino of the pentaglycine cross-bridge in the staphylococcal peptidoglycan. We asked whether antibiotic cell wall synthesis inhibitors interfere with the anchoring of surface proteins. Penicillin G, a transpeptidation inhibitor, had no effect on surface protein anchoring, whereas vancomycin and moenomycin, inhibitors of cell wall polymerization into peptidoglycan strands, slowed the sorting reaction. Cleavage of surface protein precursors did not require a mature assembled cell wall and was observed in staphylococcal protoplasts. A search for chemical inhibitors of the sorting reaction identified methanethiosulfonates and p-hydroxymercuribenzoic acid. Thus, sortase, the enzyme proposed to cleave surface proteins at the LPXTG motif, appears to be a sulfhydryl-containing enzyme that utilizes peptidoglycan precursors but not an assembled cell wall as a substrate for the anchoring of surface protein.  相似文献   

4.
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.  相似文献   

5.
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.  相似文献   

6.
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.  相似文献   

7.
Breast cancer-associated protein 1 (BRCA1) forms foci at sites of induced DNA damage, but any significance of these normal S-phase foci is unknown. BRCA1 distribution does not simply mirror or overlap that of replicating DNA; however, BRCA1 foci frequently abut sites of BrdU incorporation, mostly at mid-to-late S phase. Although BRCA1 does not overlap XIST RNA across the inactive X chromosome, BRCA1 foci position overwhelmingly in heterochromatic regions, particularly the nucleolar periphery where many centromeres reside. In humans and mice, including early embryonic cells, BRCA1 commonly associates with interphase centromere-kinetochore complexes, including pericentric heterochromatin. Proliferating cell nuclear antigen or BrdU labeling demonstrates that BRCA1 localizes adjacent to, or "paints," major satellite blocks as chromocenters replicate, where topoisomerase is also enriched. BRCA1 loss is often associated with proliferative defects, including postmitotic bridges enriched with satellite DNA. These findings implicate BRCA1 in replication-linked maintenance of centric/pericentric heterochromatin and suggest a novel means whereby BRCA1 loss may contribute to genomic instability and cancer.  相似文献   

8.
Sorting of protein A to the staphylococcal cell wall.   总被引:72,自引:0,他引:72  
O Schneewind  P Model  V A Fischetti 《Cell》1992,70(2):267-281
The cell wall of gram-positive bacteria can be thought of as representing a unique cell compartment, which contains anchored surface proteins that require specific sorting signals. Some biologically important products are anchored in this way, including protein A and fibronectin binding protein of Staphylococcus aureus and streptococcal M protein. Studies of staphylococcal protein A and Escherichia coli alkaline phosphatase show that the signal both necessary and sufficient for cell wall anchoring consists of an LPXTGX motif, a C-terminal hydrophobic domain, and a charged tail. These sequence elements are conserved in many surface proteins from different gram-positive bacteria. We propose the existence of a hitherto undescribed sorting mechanism that positions proteins on the surface of gram-positive bacteria.  相似文献   

9.
The coated pit-coated vesicle system has a key role in the uptake of plasma low density lipoprotein (LDL) and other receptor-bound proteins in human fibroblasts. To study the distribution of coated pits and coated vesicles in fibroblasts by immunochemical techniques at both the light and electron microscopic levels, we immunized rabbits with coat protein extracted from bovine brain-coated vesicles. The resulting anti-coat protein antibody was directed predominantly against clathrin, the 180,ooo dalton protein that constitutes the major component of coat protein. By indirect immunoperoxidase electron microscopy, the anti-coat protein antibody was observed to bind specifically to coated pits on the surface of human fibroblasts and to coated vesicles within the cell. Indirect immunofluorescence and immunoperoxidase staining techniques at the light microscopic level revealed that the coat protein was distributed in fibroblasts in two distinctive patterns: as discrete foci on or near the cell surface that were linearly aligned in association with phase-dense cellular fibers (first pattern), and as intracellular foci that were randomly arranged around the cell nucleus (second pattern). The distribution of coat protein in fibroblasts was compared with the distribution of ferritin-labeled LDL, which was studied with the use of similar electron microscopic and immunofluorescence techniques. As previously reported, electron microscopic studies revealed that the LDL-ferritin binding sites at 4 degrees C were clustered in coated pits. By immunofluorescence microscopy, the LDL-ferritin that was bound to receptors within coated pits was shown to be arranged linearly over the cell surface in a pattern that was similar to the linear arrangement of coat protein (first pattern). Considered together, the current data indicate that coated pits in human fibroblasts contain a protein analogous to clathrin, and that those coated pits which contain receptors for LDL are located over intracellular fibers most likely corresponding to stress fibers. These observationa may have relevance to the mechanisms by which the coated pit-coated vesicle system efficiently delivers recptor-bound ligands to lysosomes.  相似文献   

10.
Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphylococcal cell wall. Some signals do not sort effectively, but acquire sorting activity once the spacing between the LPXTG motif and the charged tail has been increased to span the same length as in protein A. Thus, signals for cell wall anchoring in Gram-positive bacteria are as universal as signal (leader) sequences.  相似文献   

11.
Cell wall sorting of lipoproteins in Staphylococcus aureus.   总被引:2,自引:0,他引:2       下载免费PDF全文
Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also be anchored to the cell wall of S. aureus. The topology of cell wall-anchored beta-lactamase is reminiscent of that described for Braun's murein lipoprotein in that the N terminus of the polypeptide chain is membrane anchored whereas the C-terminal end is tethered to the bacterial cell wall.  相似文献   

12.
Many surface proteins of pathogenic gram-positive bacteria are linked to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins of Streptococcus pneumoniae harbor another motif, YSIRK-G/S, which is positioned within signal peptides. The signal peptides of some, but not all, of the 20 surface proteins of Staphylococcus aureus carry a YSIRK-G/S motif, whereas those of surface proteins of Listeria monocytogenes and Bacillus anthracis do not. To determine whether the YSIRK-G/S motif is required for the secretion or cell wall anchoring of surface proteins, we analyzed variants of staphylococcal protein A, an immunoglobulin binding protein with an LPXTG sorting signal. Deletion of the YSIR sequence or replacement of G or S significantly reduced the rate of signal peptide processing of protein A precursors. In contrast, cell wall anchoring or the functional display of protein A was not affected. The fusion of cell wall sorting signals to reporter proteins bearing N-terminal signal peptides with or without the YSIRK-G/S motif resulted in hybrid proteins that were anchored in a manner similar to that of wild-type protein A. The requirement of the YSIRK-G/S motif for efficient secretion implies the existence of a specialized mode of substrate recognition by the secretion pathway of gram-positive cocci. It seems, however, that this mechanism is not essential for surface protein anchoring to the cell wall envelope.  相似文献   

13.
The mechanisms involved in hepatitis C virus (HCV) RNA replication are unknown, and this aspect of the virus life cycle is not understood. It is thought that virus-encoded nonstructural proteins and RNA genomes interact on rearranged endoplasmic reticulum (ER) membranes to form replication complexes, which are believed to be sites of RNA synthesis. We report that, through the use of an antibody specific for double-stranded RNA (dsRNA), dsRNA is readily detectable in Huh-7 cells that contain replicating HCV JFH-1 genomes but is absent in control cells. Therefore, as that of other RNA virus genomes, the replication of the HCV genome may involve the generation of a dsRNA replicative intermediate. In Huh-7 cells supporting HCV RNA replication, dsRNA was observed as discrete foci, associated with virus-encoded NS5A and core proteins and identical in morphology and distribution to structures containing HCV RNA visualized by fluorescence-based hybridization methods. Three-dimensional reconstruction of deconvolved z-stack images of virus-infected cells provided detailed insight into the relationship among dsRNA foci, NS5A, the ER, and lipid droplets (LDs). This analysis revealed that dsRNA foci were located on the surface of the ER and often surrounded, partially or wholly, by a network of ER-bound NS5A protein. Additionally, virus-induced dsRNA foci were juxtaposed to LDs, attached to the ER. Thus, we report the visualization of HCV-induced dsRNA foci, the likely sites of virus RNA replication, and propose that HCV genome synthesis occurs at LD-associated sites attached to the ER in virus-infected cells.  相似文献   

14.
The endodermally differentiated mouse embryonal carcinoma cell line M1536-B3 produces the basement membrane-associated glycoproteins entactin and GP-2 in cell culture. Immunological techniques coupled with light and electron microscopy were used to study the intracellular distribution and fate of these molecules. The two proteins were localized in cisternae of rough endoplasmic reticulum and in discrete membrane-bound vesicles. There was no evidence for their presence in the Golgi apparatus. The membrane-bound vesicles appeared to fuse with the plasma membrane and thereby transfer their contents to discrete foci on the cell surface. These foci became apparent as cell-to-cell contact was made and were prominent at cell-cell contact sites. They eventually coalesced into continuous densely stained extracellular bands of amorphous material. These bands formed a honeycomb of spaces lined by cells. It appeared that production of the extracellular matrix was probably stimulated by cell-cell contact, and that cell density rather than age of the cell cultures dictated the pattern of extracellular distribution. These results support the hypothesis that these molecules are involved in cell adhesion and multicellular organization.  相似文献   

15.
The mechanism of neurite initiation and elongation was studied using nerve growth factor (NGF) treatment of PC12 cells. The distribution of focal adhesion sites and of the cytoskeletal protein vinculin was determined in large, fused, multinucleated PC12 cells. In the absence of NGF, focal adhesion sites as seen by interference reflection microscopy were restricted to the cell periphery in a regular distribution. Vinculin assemblies (foci), observed by indirect immunofluorescence microscopy using affinity purified anti-vinculin antibodies, were restricted to the cell periphery at focal adhesion sites. Within 4 hr after NGF treatment of the cells, the distribution of both vinculin and focal adhesion sites began to change. Focal adhesion sites became restricted to discrete protruding portions of the cell periphery. Larger, brighter vinculin foci appeared at the tips of the cell margin extensions, concomitant with the loss of foci at locations between the protrusions. As neurites elongated focal adhesion sites and vinculin foci remained with the tips of the growth cone extensions. Both focal adhesion sites and vinculin foci were rarely seen in the perikarya of cells with elongating neurites, and these were always confined to extended portions of the cell body margin. Occasionally, vinculin foci could be seen at the proximal portion of the neurite, at bending elbows, and at discrete expansions along the length. By immunoprecipitation of vinculin from 32P-labeled cells, vinculin phosphorylation was found to be increased within 1 hr of NGF treatment. The role of vinculin phosphorylation and assembly in the formation and directional elongation of neuritic processes in response to NGF is discussed.  相似文献   

16.
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after γ irradiation; these foci then coalesce into larger clusters. Rad51-positive cells do not undergo DNA replication. Rad51 foci colocalize with both replication protein A and sites of unscheduled DNA repair synthesis and may represent a nuclear domain for recombinational DNA repair. By 24 h postirradiation, most foci are sequestered into micronuclei or assembled into Rad51-coated DNA fibers. These micronuclei and DNA fibers display genome fragmentation typical of apoptotic cell death. Other repair proteins, such as Rad52 and Gadd45, are not eliminated from the nucleus. DNA double strand breaks in repair-deficient cells or induced by the clastogen etoposide are also accompanied by the sequestering of Rad51 protein before cell death. The spindle poison colcemid causes cell cycle arrest and Rad51-foci formation without directly damaging DNA. Collectively, these observations suggest that mammalian Rad51 protein associates with damaged DNA and/or with DNA that is temporarily or irreversibly unable to replicate and these foci may subsequently be eliminated from the nucleus.  相似文献   

17.
The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.  相似文献   

18.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

19.
Staphylococcus aureus is an important human pathogen that causes skin and soft tissue abscesses. Abscess formation is not unique to staphylococcal infection and purulent discharge has been widely considered a physiological feature of healing and tissue repair. Here we present a different view, whereby S. aureus deploys specific virulence factors to promote abscess lesions that are distinctive for this pathogen. In support of this model, only live S. aureus is able to form abscesses, requiring genes that act at one or more of four discrete stages during the development of these infectious lesions. Protein A and coagulases are distinctive virulence attributes for S. aureus, and humoral immune responses specific for these polypeptides provide protection against abscess formation in animal models of staphylococcal disease.  相似文献   

20.
Burch AD  Weller SK 《Journal of virology》2004,78(13):7175-7185
Herpes simplex virus type 1 (HSV-1) encodes a portal protein that forms a large oligomeric structure believed to provide the conduit for DNA entry and exit from the capsid. Chaperone proteins often facilitate the folding and multimerization of such complex structures. In this report, we show that cellular chaperone proteins, components of the 26S proteasome, and ubiquitin-conjugated proteins are sequestered in discrete foci in the nucleus of the infected cell. The immediate-early viral protein ICP0 was shown to be necessary to establish these foci at early times during infection and sufficient to redistribute chaperone molecules in transfected cells. Furthermore, we found that not only is the portal protein, UL6, localized to these sites during infection, but it is also a substrate for ubiquitin modification. Our results suggest that HSV-1 has evolved an elegant mechanism for facilitating protein quality control at specialized foci within the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号