首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
在中高温和较低pH条件下, Ferrroplasma spp. 是进行硫化矿生物浸出的重要微生物。Ferroplasma spp.为古菌,无细胞壁, 对矿浆浓度、搅拌剪切力以及溶液中的重金属离子等敏感, 很难得到高密度的纯培养, 给大规模的工业应用带来了一定难度。研究了F. thermophilum摇瓶培养时的最佳生长条件, 单因素考察结果表明最适培条件为: 温度50oC, 初始pH 0.5, 250 mL的摇瓶装液量为50 mL, 无机氮源(NH4)2SO4。通过正交试验确定了FeSO4·7H2O、酵母粉和蛋白胨最适组合为FeSO4·7H2O 40 g/L, 酵母粉0.3 g/L, 蛋白胨0.2 g/L。优化培养后, F. thermophilum 浓度达到了6.3×107个/mL, 40 g/L的FeSO4·7H2O在72 h内全部氧化完全。该结果可为该类古菌的扩大培养以及工业应用提供参考。  相似文献   

2.
在中高温和较低pH条件下, Ferrroplasma spp. 是进行硫化矿生物浸出的重要微生物。Ferroplasma spp.为古菌,无细胞壁, 对矿浆浓度、搅拌剪切力以及溶液中的重金属离子等敏感, 很难得到高密度的纯培养, 给大规模的工业应用带来了一定难度。研究了F. thermophilum摇瓶培养时的最佳生长条件, 单因素考察结果表明最适培条件为: 温度50oC, 初始pH 0.5, 250 mL的摇瓶装液量为50 mL, 无机氮源(NH4)2SO4。通过正交试验确定了FeSO4·7H2O、酵母粉和蛋白胨最适组合为FeSO4·7H2O 40 g/L, 酵母粉0.3 g/L, 蛋白胨0.2 g/L。优化培养后, F. thermophilum 浓度达到了6.3×107个/mL, 40 g/L的FeSO4·7H2O在72 h内全部氧化完全。该结果可为该类古菌的扩大培养以及工业应用提供参考。  相似文献   

3.
目的:为阐明微生物群落演替及功能与浸出效率之间关系奠定基础,以及如何提高黄铜矿生物浸出效率和铜回收率提供理 论依据。方法:通过连续传代培养进行驯化,使得复合菌群的矿浆浓度耐受能力达到25 %(w/v)。采用该复合菌群在25 %矿浆浓 度下浸出黄铜矿,同时利用变性梯度凝胶电泳和克隆文库技术分析浸出过程中的微生物多样性。最后,采用实时荧光定量PCR 对 浸出过程中微生物群落结构进行定量解析。结果:28天内黄铜矿浸出率能够达到95.1 %,而驯化前的浸出率只有51.5%。该复合 菌群主要由Acidithiobacillus caldus, Sulfobacillus acidophilus,和Fereoplasma theroplasma thermophilum组成,其中Acidithbacillus caldus是浸出前期和后期的优势种群,而Sulfobacillus acidophilus在浸出中期均有竞争优势, Ferroplasma thermophilum在整个浸出过程中占 据整个群落的比例均较低。结论:本研究获得的复合菌群具有较强的浸出黄铜矿能力, Acidithiobacillus caldus和Sulfobacillus acidophilus在浸出过程中起着重要的作用,pH 值和铜浸出率与群落结构相关性较高。  相似文献   

4.
To compare oxidative dissolution rates of chalcopyrite by different consortia of moderately thermophilic acidophiles, various defined mixed cultures of three bacteria Acidithiobacillus caldus s2, Leptospirillum ferriphilum YSK, and Sulfobacillus sp. LN and one archaeon Ferroplasma thermophilum L1 were studied in batch shake flask cultures incubated at 45 °C. Chalcopyrite dissolution was determined by measuring variations of soluble copper, ferric iron, and pH. Microbial population dynamics involved in bioleaching process were monitored using real-time quantitative polymerase chain reaction (PCR) technology. The complex consortia containing both chemoautotrophic (L. ferriphilum and At. caldus) and chemomixotrophic (Sulfobacillus LN and F. thermophilum) moderate thermophiles were found to be the most efficient in all of those tested. Mutualistic interactions between physiologically distinct moderately thermophilic acidophiles, involving transformations of iron and sulfur and transfer of organic compound, were considered to play a critical role in promoting chalcopyrite dissolution. The real-time PCR assay was reliable to analyze population dynamics of moderate thermophiles in bioleaching systems, and the analysis results were consistent with physiological characteristics of these strains.  相似文献   

5.
The effects of pH and ferrous iron concentration in cultural medium on the bioleaching of copper-zinc concentrate by mesophilic and moderately thermophilic acidophilic microorganisms were studied. It was revealed that the optimum pH for bioleaching in presence of 5 g/L of ferrous iron was 1.4–1.5. It was shown that bioleaching under optimal conditions led to an increase in the copper content in solid phase from 10.1 to 14% and a decrease in the zinc content from 7.4 to 1.4%. The results of the present work demonstrate that acidophilic microorganisms can be used for treatment of complex sulfide concentrates containing copper and zinc.  相似文献   

6.
An obligately anaerobic spirochete designated strain SEBR 4228T (T = type strain) was isolated from an oil field of Congo, Central Africa. The strain grew optimally with a sodium chloride concentration of 5% (sodium chloride concentration growth range 1.0–10%) at 37°C (growth temperature range 20–40°C) and pH of 7.0–7.2 (pH growth range pH 5.5–8.0). Strain SEBR 4228T grew on carbohydrates (glucose, fructose, ribose, d -xylose, galactose, mannitol and mannose), glycerol, fumarate, peptides and yeast extract. Yeast extract was required for growth and could not be replaced by vitamins. It reduced thiosulfate and sulfur, to H2S. Glucose was oxidised to lactate, acetate, CO2 and H2S in the presence of thiosulfate but in its absence lactate, ethanol, CO2 and H2 were produced. Fumarate was fermented to acetate and succinate. The G+C content of strain SEBR 4228T was 50%. Strain SEBR 4228T was spiral shaped measuring 5–30 by 0.3–0.5 μm and was motile with a corkscrew-like motion. Electron microscopy revealed the presence of periplasmic flagella in a 1-2-1 arrangement. Strain SEBR 4228T possessed features typical of the members of the genus Spirochaeta . 16S rRNA sequence analysis revealed that it was closely related to Spirochaeta bajacaliforniensis (similarity 98.6%). The lack of DNA homology with S. bajacaliforniensis (38%), together with other phenotypic differences, indicated that strain SEBR 4228T is a new species, which we have designated Spirochaeta smaragdinae . The type strain is SEBR 4228T (= DSM 11293).  相似文献   

7.
Li Q  Tian Y  Fu X  Yin H  Zhou Z  Liang Y  Qiu G  Liu J  Liu H  Liang Y  Shen L  Cong J  Liu X 《Current microbiology》2011,63(2):164-172
To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.  相似文献   

8.
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.  相似文献   

9.
Aims:  The aims of this study were to identify and characterize the novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39.
Methods and Results:  Strain B39 was closely related to Paenibacillus cookii in 16S rRNA gene sequence. Nonetheless, this isolate can be identified as a novel Paenibacillus sp. with respect to its physiological characteristics, biochemical reactions, and profiles of fatty acid compositions. A cellulase with both CMCase and avicelase activities was secreted from strain B39 and purified by ion-exchange chromatography. By sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis, the molecular weight of B39 cellulase was determined as 148 kDa, which was much higher than other cellulases currently reported from Paenibacillus species. The enzyme showed a maximum CMCase activity at 60°C and pH 6·5. Addition of 1 mmol l−1 of Ca2+ markedly enhanced both CMCase and avicelase activities of the enzyme.
Conclusions:  We have identified and characterized a novel thermophilic Paenibacillus sp. strain B39 which produced a high-molecular weight cellulase with both CMCase and avicelase activities.
Significance and Impact of the Study:  Based on the ability to hydrolyse CMC and avicel, the cellulase produced by Paenibacillus sp. strain B39 would have potential applications in cellulose biodegradation.  相似文献   

10.
In a project aiming to isolate strains with the ability to produce nonribosomal peptides, a Gram-negative, endospore-forming, rod-shaped strain, designated B5T, was isolated from a soil sample collected from Tianmu Mountain national natural reserve in Hangzhou, China. Strain B5T contained meso -diaminopimelic acid in the cell wall peptidoglycan. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The DNA G+C content was 42.5 mol%. The phylogenetic analysis based on 16S rRNA gene sequence indicated that strain B5T fell within the genus Bacillus , with highest sequence similarity values to Bacillus barbaricus DSM 14730T (96.4%) and Bacillus macauensis JCM 13285T (95.5%). The isolate, however, could be distinguished from Bacillus strains with validly published names by low 16S rRNA gene sequence similarity values, distinct phenotypic and chemotaxonomic characteristics. On the basis of these polyphasic evidences, it is demonstrated that the isolate B5T represents a novel species of the genus Bacillus , for which the name Bacillus tianmuensis sp. nov. is proposed. The type strain is B5T (=DSM 22111T=CGMCC 1.8879T).  相似文献   

11.
Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45 degrees C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive.  相似文献   

12.
An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30?°C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu2+. In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1?%, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.  相似文献   

13.
Aims:  To study the exopolysaccharides (EPSs) produced by three novel moderately halophilic species belonging to the family Alteromonadaceae to optimize EPS yields, characterize their physical and chemical properties and evaluate possible biotechnological applications for these polymers.
Methods and Results:  EPSs synthesized by Idiomarina fontislapidosi F32T, Idiomarina ramblicola R22T and Alteromonas hispanica F23T were collected and analysed under optimum conditions: MY medium supplemented with 7·5% (w/v) salts; 32°C; and 1% (w/v) glucose. Polymers were synthesized mainly during the early stationary growth phase with yields ranging from 1 to 1·5 g l−1. The Idiomarina species each produced an anionic EPS composed mainly of glucose, mannose and galactose. A. hispanica synthesized an anionic EPS composed mainly of glucose, mannose and xylose. Solutions of all the polymers were low in viscosity and pseudoplastic in their behaviour. They showed emulsifying activity and the capacity to bind some metals.
Conclusions:  The Alteromonadaceae species studied in this work produced EPSs with physical and chemical properties different from those produced by other halophilic and nonhalophilic bacteria, suggesting that the wide diversity of micro-organisms being encountered nowadays in hypersaline environments offers enormous potential resources for biotechnological applications.
Significance and Impact of the Study:  We have optimized the EPS production and analysed new biopolymers produced by some recently described, moderately halophilic bacteria. These biopolymers are chemically and physically different from others already in use in biotechnology and offer hopes for new applications, especially in the case of A. hispanica , which may prove to be a viable source of xylo-oligosaccharides.  相似文献   

14.
Nine strains of three novel anamorphic yeast species were obtained from samples collected in Thailand including six strains (RV96, RV152, R14, RS9, RS58 and EA1) obtained from estuarine waters collected from two mangrove forests, one strain (ST84) from insect frass and two strains (SR16 and UB13) from forest soils. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene, the nine strains were found to represent three novel Candida species in the Saturnispora clade. Five strains (RV96, RV152, R14, RS9 and RS58) were assigned as a single novel species, which was named Candida sanitii sp. nov. The type strain is RV152T (BCC 25967T=NBRC 103864T=CBS 10864T). Strain EA1 was named as Candida suwanaritii sp. nov. The type strain is EA1T (BCC 29900T=NBRC 104877T=CBS 11021T). Three strains (ST84, SR16 and UB13) represented another novel species, for which Candida sekii sp. nov. is proposed. The type strain is ST84T (BCC 8320T=NBRC 105671T=CBS 10931T).  相似文献   

15.
Strains XZ-46A, XZ-105, XZ-129 and XZ-281T isolated from the oral cavities of healthy Tibetan volunteers were revealed to represent two novel ascomycetous yeast species by molecular taxonomic characterizations. Strain XZ-281T was most closely related to Candida humilis , but differed from the type strain of the species by eight (1.2%) substitutions in the 26S rRNA gene D1/D2 domain and by >100 (>20%) mismatches in the internal transcribed spacer (ITS) region. Strains XZ-46A, XZ-105 and XZ-129 had identical or similar D1/D2 and ITS sequences with each other and with strain 17YFT isolated from a leaf of an oak tree ( Quercus sp.). The closest relative of this group was Torulaspora microellipsoides . They differed from the type strain of the species by five (0.9%) substitutions in the D1/D2 domain and >70 (>15%) mismatches in the ITS region. A sexual state was observed in strain 17YFT, but not in the other four oral strains. An anamorphic name Candida pseudohumilis sp. nov. is proposed for strain XZ-281T (=AS 2.3956T=CBS 11404T) and a teleomorphic name Torulaspora quercuum sp. nov. is proposed for strain 17YFT (=AS 2.3768T=CBS 11403T) and the other three oral strains.  相似文献   

16.
Four yeast strains were isolated from soil in a mixed deciduous forest in Amphoe Wang Nam Khiao, Nakhon Ratchasima province, Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analyses of the D1/D2 domain of the large-subunit (LSU) rRNA gene, small-subunit rRNA gene and internal transcribed spacer (ITS) region, the three strains (S-29, S-63 and S-80) were found to represent a single species of the genus Wickerhamomyces , which were named Wickerhamomyces edaphicus sp. nov. The type strain is S-29T (BCC 21231T=NBRC 101969T=CBS 10408T). Strain S-75 represented a novel species of the genus Pichia on the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analyses of the D1/D2 domain of the LSU rRNA gene, for which the name Pichia jaroonii sp. nov. is proposed. The type strain is S-75T (BCC 23061T, NRBC 102180T=CBS 10930T).  相似文献   

17.
A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S2, was isolated from coal heap drainage. The bacterium was motile, Gram-negative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 μm, and grew optimally at 42–45°C and an initial pH of 2.5. The strain S2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (>99% similarity in gene sequence). The combination of the strain S2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.  相似文献   

18.
Aims:  The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H2) producers from digested household solid wastes.
Methods and Results:  A strict anaerobic extreme thermophilic H2 producing bacterial culture was enriched from a lab-scale digester treating household wastes at 70°C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80°C and an optimal pH 8·1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon sources. Growth on glucose produced acetate, H2 and carbon dioxide. Maximal H2 production rate on glucose was 1·1 mmol l−1 h−1 with a maximum H2 yield of 1·9 mole H2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated to the genera Bacillus and Clostridium. Relative abundance of the culture members, assessed by fluorescence in situ hybridization, were 87 ± 5% and 13 ± 5% for Bacillus and Clostridium , respectively.
Conclusions:  An extreme thermophilic, strict anaerobic, mixed microbial culture with H2-producing potential was enriched from digested household wastes.
Significance and Impact of the Study:  This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H2 production from complex organic wastes.  相似文献   

19.
氧化亚铁钩端螺旋菌(Leptospirillum ferrooxidans,L.f)是一种极端嗜酸,专性自养氧化铁的细菌,能够耐受较低pH和较高的温度,被广泛应用于生物浸矿和环境治理。氧化亚铁钩端螺旋体菌的生物浸矿效率与其对Fe~(2+)氧化速率相关,因此,本文采用响应面法,通过建立二次多项式回归方程考察pH、温度、Fe~(2+)浓度及转速四个培养因素对Fe~(2+)氧化速率的影响。结果显示在pH为2.25、温度为32℃、初始Fe~(2+)浓度为175.36 mmol/L、转数为165 r/min时,Fe~(2+)最高氧化速率为0.2911 g/Lh。  相似文献   

20.
【目的】了解嗜酸异养菌在诸如酸性矿坑水(AMD)和生物浸出体系等极端酸性环境中对浸矿微生物产生的影响。【方法】研究由嗜酸异养菌Acidiphilium acidophilum和自养菌Acidithiobacillus ferrooxidans经长期驯化后形成的共培养体系分别在Cd2+、Cu2+、Ni2+和Mg2+胁迫下的稳定性;并将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。【结果】在上述4种金属离子分别存在的条件下,异养菌Aph.acidophilum均能促进At.ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph.acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0 g/L提高到5.0 g/L,而且共培养的细胞数量与2.0 g/L Cu2+条件下生长的At.ferrooxidans纯培养相似。另外,共培养中的At.ferrooxidans对Mg2+的MTC也由12.0 g/L提高到17.0 g/L。生物浸出实验中嗜酸异养菌Aph.acidophilum促进了At.ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At.ferrooxidans纯培养的浸出率均低于33%。在加入2.0 g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At.ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。【结论】以上结果表明,Aph.acidophilum与At.ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph.acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号