首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
In this study, we describe the association of three Campylobacter jejuni metabolism-related traits, γ-glutamyl-transpeptidase (GGT), fucose permease (fucP), and secreted L-asparaginase [ansB(s)], with multilocus sequence types (STs). A total of 710 C. jejuni isolates with known STs were selected and originated from humans, poultry, bovines, and the environment. Among these isolates, we found 31.1% to produce GGT and 49.3% and 30.3% to be positive for ansB(s) and fucP, respectively. The combination of GGT production, the presence of ansB(s), and the absence of fucP was associated with ST-22, ST-586, and the ST-45 and ST-283 clonal complexes (CCs), which were the main STs and CCs found among the human and chicken isolates. The ST-21 CC was associated with the presence of fucP and was the major CC among the bovine isolates. Although the ST-61 CC was the second major CC among the bovine isolates, these isolates did not have any of the markers studied, making the role of fucP in bovine gut colonization questionable. The ST-45 CC was subdivided into three groups that were attributed solely to ST-45. One group showed a marker combination described previously, another group was found to be positive for ansB(s) only, and the third group did not have any of the markers studied. These results suggest that the host association of these markers seems to be indirect and may arise as a consequence of host-ST and -CC associations. Thus, a representative collection of STs should be tested to draw sensible conclusions in similar studies.  相似文献   

6.
7.
By use of a T7 expression system, large amounts of active Bacillus subtilis RNA polymerase sigma A factor were produced in Escherichia coli cells. This overproduced protein was found in the form of inclusion bodies and constituted 40% of the total cellular protein. Because of the ease of isolation of the inclusion bodies and the acidic properties of sigma A, the protein was purified to more than 99% purity and the yield was about 90 mg/liter of culture. Gel mobility, antigenicity, specificity of promoter recognition, and N-terminal amino acid sequence of the overproduced sigma were found to be the same as those of native sigma A. Partial proteolysis analysis of sigma A protein suggested the presence of a protease-sensitive surface region in the C-terminal part of the sigma A protein. The promoter -10 binding region of sigma A was less sensitive to proteases and was probably involved in a hydrophobic, tightly folded domain of sigma A protein.  相似文献   

8.
9.
10.
11.
12.
Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.  相似文献   

13.
Rhodobacter sphaeroides sigma(E) is a member of the extra cytoplasmic function sigma factor (ECF) family, whose members have been shown to regulate gene expression in response to a variety of signals. The functions of ECF family members are commonly regulated by a specific, reversible interaction with a cognate anti-sigma factor. In R.sphaeroides, sigma(E) activity is inhibited by ChrR, a member of a newly discovered family of zinc containing anti-sigma factors. We used gel filtration chromatography to gain insight into the mechanism by which ChrR inhibits sigma(E) activity. We found that formation of the sigma(E):ChrR complex inhibits the ability of sigma(E) to form a stable complex with core RNA polymerase. Since the sigma(E):ChrR complex inhibits the ability of the sigma factor to bind RNA polymerase, we sought to identify amino acid substitutions in sigma(E) that altered the sensitivity of this sigma factor to inhibition by ChrR. This analysis identified single amino acid changes in conserved region 2.1 of sigma(E) that either increased or decreased the sensitivity of sigma(E) for inhibition by ChrR. Many of the amino acid residues that alter the sensitivity of sigma(E) to ChrR are located within regions known to be important for interacting with core RNA polymerase in other members of the sigma(70) superfamily. Our results suggest a model where solvent-exposed residues with region 2.1 of sigma(E) interact with ChrR to sterically occlude this sigma factor from binding core RNA polymerase and to inhibit target gene expression.  相似文献   

14.
15.
S Lu  L Kroos 《Journal of bacteriology》1994,176(13):3936-3943
During sporulation of Bacillus subtilis, proteolytic activation of pro-sigma K and ensuing sigma K-dependent gene expression normally require the activity of many sporulation gene products. We report here that overproducing pro-sigma K at the onset of sporulation substantially uncouples sigma K-dependent gene expression from its normal dependency. Overproducing pro-sigma K in strains with a mutation in spoIIIG, spoIIIA, spoIIIE, or spoIVB partially restored sigma K-dependent gene expression in the mother cell and resulted in accumulation of a small amount of polypeptide that comigrated with sigma K, but these mutants still failed to form spores. In contrast, sporulation of spoIVF mutants was greatly enhanced by pro-sigma K overproduction. The products of the spoIVF operon are made in the mother cell and normally govern pro-sigma K processing, but overproduction of pro-sigma K appears to allow accumulation of a small amount of sigma K, which is sufficient to partially restore mother cell gene expression and spore formation. This spoIVF-independent mechanism for processing pro-sigma K depends on sigma E, an earlier-acting mother cell-specific sigma factor. The spoIIID gene, which encodes a mother cell-specific DNA-binding protein that is normally required for pro-sigma K production, was shown to be required for efficient pro-sigma K processing as well. bof (bypass of forespore) mutations bypassed this requirement for spoIIID, suggesting that SpoIIID is less directly involved in pro-sigma K processing than are spoIVF gene products. However, bof spoIIID double mutants overproducing pro-sigma K still failed to sporulate, indicating that SpoIIID serves another essential role(s) in sporulation in addition to its multiple roles in the production of sigma K.  相似文献   

16.
17.
18.
19.
The acidic amino acids (Asp, Glu) and their amides (Asn, Gln) support rapid growth of a variety of Pseudomonas strains when provided as the sole source of carbon and nitrogen. All key enzymes of glutamate metabolism were detected in P. fluorescence, with glutaminase and asparaginase showing the highest specific activities. A periplasmic glutaminase/asparaginase activity (PGA) was found in all pseudomonads examined, including a number of root-colonizing biocontrol strains. The enzyme was purified and shown to be identical with the ansB gene product described previously. In addition to PGA, P. fluorescens contains a cytoplasmic asparaginase with marked specificity for Asn. PGA is strongly and specifically induced by its substrates (Asn, Gln) but also by the reaction products (Asp, Glu). In addition, PGA is subject to efficient carbon catabolite repression by glucose and by citrate cycle metabolites. A mutant of P. putida KT2440 with a disrupted ansB gene was unable to utilize Gln, whereas growth of the mutant on other amino acids was normal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号