首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two populations of axial mesoderm cells can be recognised in the chick embryo, posterior notochord and anterior prechordal mesoderm. We have examined the cellular and molecular events that govern the specification of prechordal mesoderm. We report that notochord and prechordal mesoderm cells are intermingled and share expression of many markers as they initially extend out of Hensen's node. In vitro culture studies, together with in vivo grafting experiments, reveal that early extending axial mesoderm cells are labile and that their character may be defined subsequently through signals that derive from anterior endodermal tissues. Anterior endoderm elicits aspects of prechordal mesoderm identity in extending axial mesoderm by repressing notochord characteristics, briefly maintaining gsc expression and inducing BMP7 expression. Together these experiments suggest that, in vivo, signalling by anterior endoderm may determine the extent of prechordal mesoderm. The transforming growth factor (beta) (TGFbeta) superfamily members BMP2, BMP4, BMP7 and activin, all of which are transiently expressed in anterior endoderm mimic distinct aspects of its patterning actions. Together our results suggest that anterior endoderm-derived TGFbetas may specify prechordal mesoderm character in chick axial mesoderm.  相似文献   

3.
4.
5.
The establishment of heart mesoderm during Xenopus development has been examined using an assay for heart differentiation in explants and explant combinations in culture. Previous studies using urodele embryos have shown that the heart mesoderm is induced by the prospective pharyngeal endoderm during neurula and postneurula stages. In this study, we find that the specification of heart mesoderm must begin well before the end of gastrulation in Xenopus embryos. Explants of prospective heart mesoderm isolated from mid- or late neurula stages were capable of heart formation in nearly 100% of cases, indicating that the specification of heart mesoderm is complete by midneurula stages. Moreover, inclusion of pharyngeal endoderm had no statistically significant effect upon either the frequency of heart formation or the timing of the initiation of heartbeat in explants of prospective heart mesoderm isolated after the end of gastrulation. When the superficial pharyngeal endoderm was removed at the beginning of gastrulation, experimental embryos formed hearts, as did explants of prospective heart mesoderm from such embryos. These results indicate that the inductive interactions responsible for the establishment of heart mesoderm occur prior to the end of gastrulation and do not require the participation of the superficial pharyngeal endoderm.  相似文献   

6.
The visceral musculature of the larval midgut of Drosophila has a lattice-type structure and consists of an inner stratum of circular fibers and an outer stratum of longitudinal fibers. The longitudinal fibers originate from the posterior tip of the mesoderm anlage, which has been termed the caudal visceral mesoderm (CVM). In this study, we investigate the specification of the CVM and particularly the role of the Drosophila Brachyury-homologue brachyenteron. Supported by fork head, brachyenteron mediates the early specification of the CVM along with zinc-finger homeodomain protein-1. This is the first function described for brachyenteron or fork head in the mesoderm of Drosophila. The mode of cooperation resembles the interaction of the Xenopus homologues Xbra and Pintallavis. Another function of brachyenteron is to establish the surface properties of the CVM cells, which are essential for their orderly migration along the trunk-derived visceral mesoderm. During this movement, the CVM cells, under the control of brachyenteron, induce the formation of one muscle/pericardial precursor cell in each parasegment. We propose that the functions of brachyenteron in mesodermal development of Drosophila are comparable to the roles of the vertebrate Brachyury genes during gastrulation.  相似文献   

7.
8.
9.
10.
The homeobox gene tinman plays a key role in the specification of Drosophila heart progenitors and the visceral mesoderm of the midgut, both of which arise at defined positions within dorsal areas of the mesoderm. Here, we show that in addition to the heart and midgut visceral mesoderm, tinman is also required for the specification of all dorsal body wall muscles. Thus it appears that the precursors of the heart, visceral musculature, and dorsal somatic muscles are all specified within the same broad domain of dorsal mesodermal tinman expression. Locally restricted activities of tinman are also observed during its early, general mesodermal expression, where tinman is required for the activation of the homeobox gene buttonless in precursors of the “dorsal median” (DM) glial cells along the ventral midline. These observations, together with others showing only mild effects of ectopic tinman expression on heart development, indicate that tinman function is obligatory, but not sufficient to determine individual tissues within the mesoderm. Therefore, we propose that tinman has a role in integrating positional information that is provided by intersecting domains of additional regulators and signals, which may include Wingless, Sloppy Paired, and Hedgehog in the dorsal mesoderm and EGF-signaling at the ventral midline. Previous studies have shown that Dpp acts as an inductive signal from dorsal ectodermal cells to induce tinman expression in the dorsal mesoderm, which, in turn, is needed for heart and visceral mesoderm formation. In the present report, we show that Thickveins, a type I receptor of Dpp, is essential for the transmission of Dpp signals into the mesoderm. Constitutive activity of Tkv in the entire mesoderm induces ectopic tinman expression in the ventral mesoderm, and this results in the ectopic formation of heart precursors in a defined area of the ventrolateral mesoderm. We further show that Screw, a second BMP2/4-related gene product, Tolloid, a BMP1-related protein, and the zinc finger-containing protein Schnurri, are required to allow full levels of tinman induction during this process. It is likely that some of these functional and regulatory properties of tinman are shared by tinman-related genes from vertebrates that have similarly important roles in embryonic heart development. Dev. Genet. 22:187–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.  相似文献   

13.
In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe.  相似文献   

14.
The hematopoietic and endothelial lineages derive from mesoderm and are thought to develop through the maturation of a common progenitor, the hemangioblast. To investigate the developmental processes that regulate mesoderm induction and specification to the hemangioblast, we generated an embryonic stem cell line with the green fluorescent protein (GFP) targeted to the mesodermal gene, brachyury. After the in vitro differentiation of these embryonic stem cells to embryoid bodies, developing mesodermal progenitors could be separated from those with neuroectoderm potential based on GFP expression. Co-expression of GFP with the receptor tyrosine kinase Flk1 revealed the emergence of three distinct cell populations, GFP(-)Flk1(-), GFP(+)Flk1(-) and GFP(+)Flk1(+) cells, which represent a developmental progression ranging from pre-mesoderm to prehemangioblast mesoderm to the hemangioblast.  相似文献   

15.
In the sea urchin embryo, the micromeres act as a vegetal signaling center. These cells have been shown to induce endoderm; however, their role in mesoderm development has been less clear. We demonstrate that the micromeres play an important role in the induction of secondary mesenchyme cells (SMCs), possibly by activating the Notch signaling pathway. After removing the micromeres, we observed a significant delay in the formation of all mesodermal cell types examined. In addition, there was a marked reduction in the numbers of pigment cells, blastocoelar cells and cells expressing the SMC1 antigen, a marker for prospective SMCs. The development of skeletogenic cells and muscle cells, however, was not severely affected. Transplantation of micromeres to animal cells resulted in the induction of SMC1-positive cells, pigment cells, blastocoelar cells and muscle cells. The numbers of these cell types were less than those found in sham transplantation control embryos, suggesting that animal cells are less responsive to the micromere-derived signal than vegetal cells. Previous studies have demonstrated a role for Notch signaling in the development of SMCs. We show that the micromere-derived signal is necessary for the downregulation of the Notch protein, which is correlated with its activation, in prospective SMCs. We propose that the micromeres induce adjacent cells to form SMCs, possibly by presenting a ligand for the Notch receptor.  相似文献   

16.
Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号