首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

2.
Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca–DPA). Spores excrete Ca–DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported.  相似文献   

3.
The role of dipicolinic acid (DPA) in determining the resistance of Bacillus cereus spores to u.v. and gamma radiation was investigated. B. cereus BIS-59 spores containing varying amounts of DPA were prepared by appropriate compositional adjustments in the secondary media. Compared with spores containing 6 per cent DPA (dry weight) those containing 0.8 per cent DPA were far more sensitive to u.v. radiation. Similar u.v. radiation sensitivity was also found in respect of a DPA-less mutant of B. cereus T 6A 1. Pre-treatment of DPA deficient spores (of wild type or mutant B. cereus) with DPA or the presence of DPA during irradiation resulted in increased resistance of these spores to u.v. radiation. In the range 0.2 to 1 per cent DPA content of spores of B. cereus BIS-59, a striking inverse relationship could be discerned between the DPA content and the number of spore photo-products (5-thymidyl, 5,6-dihydrothymine) formed in DNA and spore viability. The resistance of B. cereus spores to gamma radiation did not seem to be influenced by their DPA content.  相似文献   

4.
AIMS: To determine the mechanisms of killing of Bacillus subtilis spores by ethanol or strong acid or alkali. METHODS AND RESULTS: Killing of B. subtilis spores by ethanol or strong acid or alkali was not through DNA damage and the spore coats did not protect spores against these agents. Spores treated with ethanol or acid released their dipicolinic acid (DPA) in parallel with spore killing and the core wet density of ethanol- or acid-killed spores fell to a value close to that for untreated spores lacking DPA. The core regions of spores killed by these two agents were stained by nucleic acid stains that do not penetrate into the core of untreated spores and acid-killed spores appeared to have ruptured. Spores killed by these two agents also did not germinate in nutrient and non-nutrient germinants and were not recovered by lysozyme treatment. Spores killed by alkali did not lose their DPA, did not exhibit a decrease in their core wet density and their cores were not stained by nucleic acid stains. Alkali-killed spores released their DPA upon initiation of spore germination, but did not initiate metabolism and degraded their cortex very poorly. However, spores apparently killed by alkali were recovered by lysozyme treatment. CONCLUSIONS: The data suggest that spore killing by ethanol and strong acid involves the disruption of a spore permeability barrier, while spore killing by strong alkali is due to the inactivation of spore cortex lytic enzymes.SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide further information on the mechanisms of spore killing by various chemicals.  相似文献   

5.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

6.
Rough and smooth variants of Bacillus stearothermophilus strains ATCC 12976 and 12980 were isolated. These variants showed morphologically different colonies. In both strains the rough variants were less heat-resistant than the smooth ones, and their activation occurred in a shorter time; on the other hand, their dipicolinic acid (DPA) content was higher. These results indicate that a relationship between higher DPA content and higher thermal resistance does not exist. Therefore, this evidence supports the hypothesis that DPA is not the determining factor in the degree of spore heat resistance but that it could, instead, have a role in maintaining thermal resistance obtained by other means.  相似文献   

7.
Bacillus subtilis cells with mutations in the spoVA operon do not complete sporulation. However, a spoVA strain with mutations that remove all three of the spore's functional nutrient germinant receptors (termed the ger3 mutations) or the cortex lytic enzyme SleB (but not CwlJ) did complete sporulation. ger3 spoVA and sleB spoVA spores lack dipicolinic acid (DPA) and have lower core wet densities and levels of wet heat resistance than wild-type or ger3 spores. These properties of ger3 spoVA and sleB spoVA spores are identical to those of ger3 spoVF and sleB spoVF spores that lack DPA due to deletion of the spoVF operon coding for DPA synthetase. Sporulation in the presence of exogenous DPA restored DPA levels in ger3 spoVF spores to 53% of the wild-type spore levels, but there was no incorporation of exogenous DPA into ger3 spoVA spores. These data indicate that one or more products of the spoVA operon are involved in DPA transport into the developing forespore during sporulation.  相似文献   

8.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80 degrees C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70 degrees C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60 degrees C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

9.
Dipicolinic acid (DPA) comprises approximately 10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective alpha/beta-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-gamma. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most alpha/beta-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to alpha/beta-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.  相似文献   

10.
Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45°C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45°C by wet heat, 2 M HCl, 2 M NaOH and 2 M H2O2 was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45°C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45°C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45°C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.  相似文献   

11.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

12.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

13.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

14.
Thermal resistance in heat-sensitive, dipicolinic acid (DPA)-less spores of Bacillus cereus Ht-8 heated in sucrose solutions increased at and above a concentration of 2 M sucrose. The decimal reduction times at 75 degrees C for spores heated in 0.0, 1.8, 2.2, and 2.6 M sucrose were 2.0, 2.8, 4.5, and 12 min, respectively. Maltose, fructose, and glucose increased heat resistance above that observed in water but did not elevate resistance to the level observed with sucrose at the same osmolality. Cation-induced loss of thermal resistance in chemically sensitized spores was reversed in the presence of sucrose. Spores germinated in brain heart infusion were resistant when heated in sucrose. In the presence of sucrose, spores exhibited an increase in optical density at 700 nm. Electron micrographs of the DPA-less spores suspended in 2.2 M sucrose revealed a shrinkage of outer coats and exosporium membranes. The results suggested that the osmotic property of sugars increased thermal resistance in DPA-less spores. The osmotic pressure exerted by sugars may be similar to the pressure that usually exists within the cortex of normal spores containing DPA and may cause the dehydration of the protoplast and the consequent thermal resistance. The role of dehydration and the nonessential nature of DPA for thermal resistance in spores were confirmed.  相似文献   

15.
Thermal resistance in heat-sensitive, dipicolinic acid (DPA)-less spores of Bacillus cereus Ht-8 heated in sucrose solutions increased at and above a concentration of 2 M sucrose. The decimal reduction times at 75 degrees C for spores heated in 0.0, 1.8, 2.2, and 2.6 M sucrose were 2.0, 2.8, 4.5, and 12 min, respectively. Maltose, fructose, and glucose increased heat resistance above that observed in water but did not elevate resistance to the level observed with sucrose at the same osmolality. Cation-induced loss of thermal resistance in chemically sensitized spores was reversed in the presence of sucrose. Spores germinated in brain heart infusion were resistant when heated in sucrose. In the presence of sucrose, spores exhibited an increase in optical density at 700 nm. Electron micrographs of the DPA-less spores suspended in 2.2 M sucrose revealed a shrinkage of outer coats and exosporium membranes. The results suggested that the osmotic property of sugars increased thermal resistance in DPA-less spores. The osmotic pressure exerted by sugars may be similar to the pressure that usually exists within the cortex of normal spores containing DPA and may cause the dehydration of the protoplast and the consequent thermal resistance. The role of dehydration and the nonessential nature of DPA for thermal resistance in spores were confirmed.  相似文献   

16.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to an acidic solution containing Fe(3+), EDTA, KI and ethanol termed the KMT reagent. METHODS AND RESULTS: Wild-type B. subtilis spores were not mutagenized by the KMT reagent but the wild-type and recA spores were killed at the same rate. Spores (alpha(-)beta(-)) lacking most DNA-protective alpha/beta-type small, acid-soluble spore proteins were less resistant to the KMT reagent than wild-type spores but were also not mutagenized, and alpha(-)beta(-) and alpha(-)beta(-)recA spores exhibited nearly identical resistance. Spore resistance to the KMT reagent was greatly decreased if spores had defective coats. However, the level of unsaturated fatty acids in the inner membrane did not determine spore sensitivity to the KMT reagent. Survivors in spore populations killed by the KMT reagent were sensitized to killing by wet heat or nitrous acid and to high salt in plating medium. KMT reagent-killed spores had not released their dipicolinic acid (DPA), although these killed spores released their DPA more readily when germinated with dodecylamine than did untreated spores. However, KMT reagent-killed spores did not germinate with nutrients or Ca(2+)-DPA and were recovered only poorly by lysozyme treatment in a hypertonic medium. CONCLUSIONS: The KMT reagent does not kill spores by DNA damage and a major factor in spore resistance to this reagent is the spore coat. KMT reagent treatment damages the spore's ability to germinate, perhaps by damaging the spore's inner membrane. However, this damage is not oxidation of unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanism of spore resistance to and killing by the KMT reagent developed for killing Bacillus spores.  相似文献   

17.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to the general biological decontamination agents, Decon and Oxone. METHODS AND RESULTS: Spores of B. subtilis treated with Decon or Oxone did not accumulate DNA damage and were not mutagenized. Spore killing by these agents was increased if spores were decoated. Spores prepared at higher temperatures were more resistant to these agents, consistent with a major role for spore coats in this resistance. Neither Decon nor Oxone released the spore core's depot of dipicolinic acid (DPA), but Decon- and Oxone-treated spores more readily released DPA upon a subsequent normally sublethal heat treatment. Decon- and Oxone-killed spores initiated germination with dodecylamine more rapidly than untreated spores, but could not complete germination triggered by nutrients or Ca(2+)-DPA and did not degrade their peptidoglycan cortex. However, lysozyme treatment did not recover these spores. CONCLUSIONS: Decon and Oxone do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents is the spore coat. Spore killing by both agents renders spores defective in germination, possibly because of damage to the inner membrane of spore. SIGNIFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of the killing of bacterial spores by Decon and Oxone.  相似文献   

18.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by hypochlorite and chlorine dioxide, and its resistance against them. METHODS AND RESULTS: Spores of B. subtilis treated with hypochlorite or chlorine dioxide did not accumulate damage to their DNA, as spores with or without the two major DNA protective alpha/beta-type small, acid soluble spore proteins exhibited similar sensitivity to these chemicals; these agents also did not cause spore mutagenesis and their efficacy in spore killing was not increased by the absence of a major DNA repair pathway. Spore killing by these two chemicals was greatly increased if spores were first chemically decoated or if spores carried a mutation in a gene encoding a protein essential for assembly of many spore coat proteins. Spores prepared at a higher temperature were also much more resistant to these agents. Neither hypochlorite nor chlorine dioxide treatment caused release of the spore core's large depot of dipicolinic acid (DPA), but hypochlorite- and chlorine dioxide-treated spores much more readily released DPA upon a subsequent normally sub-lethal heat treatment than did untreated spores. Hypochlorite-killed spores could not initiate the germination process with either nutrients or a 1 : 1 chelate of Ca2+-DPA, and these spores could not be recovered by lysozyme treatment. Chlorine dioxide-treated spores also did not germinate with Ca2+-DPA and could not be recovered by lysozyme treatment, but did germinate with nutrients. However, while germinated chlorine dioxide-killed spores released DPA and degraded their peptidoglycan cortex, they did not initiate metabolism and many of these germinated spores were dead as determined by a viability stain that discriminates live cells from dead ones on the basis of their permeability properties. CONCLUSIONS: Hypochlorite and chlorine dioxide do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents appears to be the spore coat. Spore killing by hypochlorite appears to render spores defective in germination, possibly because of severe damage to the spore's inner membrane. While chlorine dioxide-killed spores can undergo the initial steps in spore germination, these germinated spores can go no further in this process probably because of some type of membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of the killing of bacterial spores by hypochlorite and chlorine dioxide.  相似文献   

19.
The proteins encoded by the spoVA operon, including SpoVAD, are essential for the uptake of the 1:1 chelate of pyridine-2,6-dicarboxylic acid (DPA(2,6)) and Ca(2+) into developing spores of the bacterium Bacillus subtilis. The crystal structure of B. subtilis SpoVAD has been determined recently, and a structural homology search revealed that SpoVAD shares significant structural similarity but not sequence homology to a group of enzymes that bind to and/or act on small aromatic molecules. We find that molecular docking placed DPA(2,6) exclusively in a highly conserved potential substrate-binding pocket in SpoVAD that is similar to that in the structurally homologous enzymes. We further demonstrate that SpoVAD binds both DPA(2,6) and Ca(2+)-DPA(2,6) with a similar affinity, while exhibiting markedly weaker binding to other DPA isomers. Importantly, mutations of conserved amino acid residues in the putative DPA(2,6)-binding pocket in SpoVAD essentially abolish its DPA(2,6)-binding capacity. Moreover, replacement of the wild-type spoVAD gene in B. subtilis with any of these spoVAD gene variants effectively eliminated DPA(2,6) uptake into developing spores in sporulation, although the variant proteins were still located in the spore inner membrane. Our results provide direct evidence that SpoVA proteins, in particular SpoVAD, are directly involved in DPA(2,6) movement into developing B. subtilis spores.  相似文献   

20.
Endospores are heat-resistant bacterial resting stages that can remain viable for long periods of time and may thus accumulate in sediments as a function of sediment age. The number of spores in sediments has only rarely been quantified, because of methodological problems, and consequently little is known about the quantitative contribution of endospores to the total number of prokaryotic cells. We here report on a protocol to determine the number of endospores in sediments and cultures. The method is based on the fluorimetric determination of dipicolinic acid (DPA), a spore core-specific compound, after reaction with terbium chloride. The concentration of DPA in natural samples is converted into endospore numbers using endospore-forming pure cultures as standards. Quenching of the fluorescence by sediment constituents and background fluorescence due to humic substances hampered direct determination of DPA in sediments. To overcome those interferences, DPA was extracted using ethyl acetate prior to fluorimetric measurements of DPA concentrations. The first results indicated that endospore numbers obtained with this method are orders of magnitude higher than numbers obtained by cultivation after pasteurization. In one of the explored sediment cores, endospores accounted for 3% of all stainable prokaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号