首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the separation of guinea pig epidermal keratinocytes, in which the Feulgen-stainable material suffers minimal damage, has been investigated. The principal stage involves trypsin treatment of the epidermal sheet, stripped from the dermis with ethylenediamine tetraacetic acid. The epidermal cells thus isolated are separated into three groups by centrifugation on a continuous colloidal silica (Percoll) density gradient. The resulting arrangement of the keratinocytes in the centrifuge tube corresponds to their arrangement in situ, with basal cells at the bottom and the more differentiated cells above. By morphological examination, it can be shown that relatively pure fractions of basal cells, spinous cells, and granular cells are obtained by this method. With respect to DNA distribution pattern, there was good agreement between that of keratinocytes separated by the microdissection-ultrasonic irradiation method, or by the chymotrypsin method as reported previously by us, and that obtained by the present method.  相似文献   

2.
Summary The fluorescence polarization method was applied to measure the intracellular fluidity of fractionated guinea pig keratinocytes. Guinea pig epidermal cell suspension was obtained by treatment with EDTA and trypsin, and was separated into high, intermediate, and low density fractions using Percoll density gradient centrifugation. Morphological observation and cytofluorometric analysis of DNA content in the fractionated epidermal cells showed that the high, intermediate, and low density fractions were basal, spinous, and granular cell-rich fractions, respectively. Intracellular fluorescence polarization of each fraction was determined by a polarization spectrofluorometer (Hitachi MPF-4, prototype) with fluorescein diacetate. The P-values were calculated for high, intermediate, and low density fractions as 0.192 ± 0.021, 0.172 ± 0.019, and 0.147 ± 0.012, respectively. Since low P-values indicate a high degree of fluidity, the results indicate that intracellular fluidity of keratinocytes is lower in basal cells and higher in granular cells. Dye-binding experiments showed that fluorescein-binding proteins were not detected in the soluble fraction of the epidermal cells. The present findings suggest that intracellular fluidity of the guinea pig keratinocyte increases during the process of its differentiation.  相似文献   

3.
Frozen human cadaver skin obtained from the skin bank was thawed and incubated in serum-free medium for 1–2 days, after which the original epidermis could be removed mechanically. Transmission electron microscopic observations showed that the dermal matrix remaining behind contained intact bundles of collagen fibrils but no live cells and that a continuous lamina densa persisted in the basement membrane region. Indirect immunofluorescence analyses demonstrated linear staining of the basement membrane region by antibodies against laminin and type IV collagen and discontinuous staining with antibodies against fibronectin. Scanning electron microscopic observations revealed a normal topographical arrangement of dermal matrix papilla and interspersed crypts on the surface of the matrix. Epidermal cells placed on the dermal matrix attached in 1–2 h and spread by 24 h. After 1 week of culture the epidermis was reconstituted, at which time approximately 30% of the epidermal cells were basal keratinocytes and the remainder were more differentiated keratinocytes. A high degree of differentiation of the reconstituted epidermis was shown by the formation of hemidesmosomes along the basement membrane, the formation of desmosomes characterized by intercellular dense lines, and the presence of a cell layer containing keratohyalin granules. At various times during epidermal reconstitution, cells were harvested and tested in short-term assays for adhesion to fibronectin substrata. During the first several days there was a transient activation of basal keratinocyte spreading analogous to the modulation of keratinocyte spreading that we have observed during epidermal reconstitution in vivo.  相似文献   

4.
Epidermal human cells (keratinocytes) differently interact with extracellular matrix proteins of the skin basal membrane depending on the stages of their differentiation. The pool of basal keratinocytes commonly includes stem cells and transient amplifying cells. They directly attach to the skin basal membrane. Keratinocytes change their adhesive properties during differentiation, lose direct interaction with the basal membrane and move to suprabasal epidermal strata. From this, it is suggested that basal and primarily stem cells can be isolated from a heterogenous keratinocyte population due to their selective adhesion to the extracellular matrix proteins. In the current study, we analysed the specificity of interaction between primary keratinocytes and extracellular matrix proteins (collagens of I and IV types, laminin-2/4, fibronectin and matrigel). We have demonstrated that the basal keratinocytes extracted from the skin have different adhesive abilities. The rapidly spreading cells usually interacted with collagen and fibronectin rather that with laminin-2/4 or matrigel. The majority of these cells being represented by basal keratinocytes. Our data demonstrate that the applied method of keratinocyte selection may be directed for precise isolation of skin stem from a common cell population.  相似文献   

5.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

6.
Keratinocyte adhesion to basal lamina and lateral interactions among basal epidermal cells are mediated, besides other molecules, by integrin receptors that are sorted to defined membrane domains. The hemidesmosome-associated integrin alpha 6 beta 4 is sharply localized to the basal surface of basal cells while alpha 2 beta 1 and alpha 3 beta 1 are enriched laterally. This integrin sorting pattern is perfectly reproducible in vitro by cultured keratinocytes and takes place progressively in primary or secondary culture in the presence of 1.8 mM Ca2+. The polarized topography of integrins is gradually lost with higher passage numbers and between passage 5 and passage 7 there is a complete pericellular redistribution of the above integrins. Along with the decreased basal adhesive value of alpha 6 beta 4 there is a marked increase in the number of focal contacts in high-passage keratinocyte colonies. A similar loss of polarized topography of integrins occurs under low-Ca2+ culture conditions. Increasing the number of culture passages beyond the fifth induces the appearance of the fibronectin receptor alpha 5 beta 1 on the surface of keratinocytes, particularly at intercellular junctions and in some focal contacts. The receptor alpha 5 beta 1 is not detectably exposed by low-passage cells. We propose that forcing keratinocytes into more frequent cell cycles by continuous passaging may perturb the polarized topography of integrins and the adhesion mechanisms of keratinocytes. Then, low-passage keratinocytes are, in our opinion, the most reliable in vitro models for studying the physiology of epidermal cells.  相似文献   

7.
Ultrastructural localization of basigin in normal human epidermis   总被引:7,自引:0,他引:7  
Basigin is a glycosylated transmembrane protein belonging to the immunoglobulin superfamily. It is thought to play roles in intercellular recognition involved in cell differentiation. We previously demonstrated at the light microscope level a correlation between basigin expression and epidermal differentiation. In the present study, the ultrastructural localization of basigin in normal human epidermal keratinocytes was investigated by immunoelectron microscopy. The basigin labeling was strongest on membranes of basal cells, weaker on prickle cells, and absent in granular and horny cells. On the membrane of basal cells, labeling was observed on the apical and lateral sides but not on the dermal side. Gold particles were mostly observed on the surface of microvilli, especially on their tips. There were fewer on the intermicrovillous membrane and they were absent on the desmosome. These results are consistent with our previous report that basigin expression is correlated with differentiation of epidermal keratinocytes. Microvilli on basal and suprabasal keratinocytes might play roles in the differentiation of keratinocytes through basigin on the tips of microvilli.  相似文献   

8.
Epithelial origin of cutaneous anchoring fibrils   总被引:5,自引:3,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):2109-2115
Anchoring fibrils are essential structural elements of the dermoepidermal junction and are crucial to its functional integrity. They are composed largely of type VII collagen, but their cellular origin has not yet been confirmed. In this study, we demonstrate that the anchoring fibrils are primarily a product of epidermal keratinocytes. Human keratinocyte sheets were transplanted to a nondermal connective tissue graft bed in athymic mice. De novo anchoring fibril formation was studied ultrastructurally by immunogold techniques using an antiserum specific for human type VII procollagen. At 2 d after grafting, type VII procollagen/collagen was localized both intracellularly within basal keratinocytes and extracellularly beneath the discontinuous basal lamina. Within 6 d, a subconfluent basal lamina had developed, and newly formed anchoring fibrils and anchoring plaques subjacent to the xenografts were labeled. Throughout the observation period of the experiment, the maturity, population density, and architectural complexity of anchoring fibrils beneath the human epidermal graft continuously increased. Identical findings were obtained using xenografts cultivated from cloned human keratinocytes, eliminating the possibility of contributions to anchoring fibril regeneration from residual human fibroblasts. Immunolabeling was not observed at the mouse dermoepidermal junction at any time. These results demonstrate that the type VII collagen of human cutaneous anchoring fibrils and plaques is secreted by keratinocytes and can traverse the epidermal basal lamina and that the fibril formation can occur in the absence of cells of human dermal origin.  相似文献   

9.
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression.  相似文献   

10.
Epidermal cells were harvested from the dorsal skin of adult mice by trypsinization and were sedimented through continuous density gradients of Percoll, formulated to separate basal cells of different buoyant density. Five fractions from the gradients were characterized with regard to the number of cells present, their viability and morphology and their basal origin. Suprabasal keratinocytes remained primarily at the top of the gradient; basal keratinocytes sedimented throughout. With increasing density, a relative enrichment was observed: (i) for [3H]-thymidine and [3H]-benzo[alpha]pyrene label-retaining (slowly cycling) keratinocytes; (ii) for keratinocytes that could proliferate in vitro in the continuous presence of 0.1 micrograms ml-1 of 12-O-tetradecanoylphorbol-13-acetate; (iii) for cells from untreated as well as initiated epidermis able to proliferate under conditions where calcium induces terminal differentiation; and (iv) for primary in vitro clonogenic keratinocytes from normal epidermis. The relative enrichment for epidermal basal cells having characteristics thought to be associated with immaturity and with the initiation and promotion of skin carcinogenesis suggests that density gradient sedimentation could be used in conjunction with other methods for the eventual purification of epidermal progenitors.  相似文献   

11.
Cell-cycle withdrawal in cultured keratinocytes   总被引:2,自引:0,他引:2  
Cell-cycle withdrawal is the irreversible arrest of replication that occurs in keratinocytes early in terminal differentiation. According to the epidermal proliferation unit (EPU) model of renewal, withdrawal takes place in a subset of cells that have completed a final cycle of amplification replication. Using a recently developed double-labelling assay, we followed cell-cycle withdrawal in growing cultures of epidermal keratinocytes and correlated these results with population-growth kinetics. The levels of withdrawal measured were much too high to be consistent with the population-growth kinetics. These unexpectedly high levels could be explained by postulating that withdrawal takes place in a specific subset of cells, as described by the EPU model. Other possible explanations were entertained but, for various reasons, were considered unlikely. To learn whether withdrawal occurred in basal or suprabasal cells, confluent cultures were pulse labeled with 3H-thymidine, and the position of the labeled cells was monitored by autoradiography during the period of cold chase. The results indicated that, in cultured keratinocytes, withdrawal takes place while the cells are still in the basal compartment.  相似文献   

12.
The unique cytokeratin K19 specifically expresses in simple epithelial cells, basal cells of non-keratinized stratified squamous epithelium, epidermal cells during the embryonic stage and squamous carcinoma cells, but it is not expressed in adult epidermis. Interestingly, when epidermal cells are cultured in vitro, K19 is re-expressed in the supra-basal layer. K19 expression was used as a marker for epidermal cell growth and differentiation. In order to clarify the temporal and spatial sequential expression in cultured keratinocyte, two-stage human keratinocyte culture systems were used to examine K19 expression in keratinocytes in a proliferation and differentiation stages through immunoblotting and immunohistochemistry assay. According to our results, K19 was not expressed in cultured human keratinocytes in the proliferation stage but was re-expressed in keratinocytes three days after the cultured medium was changed to a differentiation medium. Immunohistochemical observation revealed that K19 was persistently expressed in the supra-basal layer of cultured keratinocytes during first three weeks of culturing, but none was detectable in the basal cell layer. When keratinocytes were cultured with an "inserted cultured dish," K19 was persistently expressed in all layers of keratinocytes nourished by medium both from an inner chamber and an outer chamber. The different expression of K19 in these two different culture systems seemed to indicate that down regulation of K19 expression in keratinocyte was related to the direction of medium supply.  相似文献   

13.
The metabolism of arachidonic acid was studied using basal and differentiated keratinocytes as well as sebaceous cells isolated from hairless mice. These disassociated cells metabolized arachidonic acid predominantly to the prostaglandin H synthase products prostaglandins E2 and D2. 12-Hydroxyheptadecatrienoic acid (HHT), prostaglandin F2 alpha, thromboxane B2 and 6-ketoprostaglandin F1 alpha were also detected. Smaller amounts of the lipoxygenase products 5-, 12- and 15-hydroxyeicosatetraenoic acids (HETEs) were also detected. The major lipoxygenase product observed was 12-HETE. No leukotrienes or dihydroxy fatty acids were observed. The identity of the metabolites was established using several high-pressure liquid chromatography solvent systems. The biosynthesis of prostaglandins E2 and D2 was very rapid and was inhibited by the addition of indomethacin to the cells. The mixed population of keratinocytes and sebaceous cells were separated into enriched fractions by metrizamide gradients and elutriation techniques. The small, undifferentiated cells had high prostaglandin H synthase and 12-lipoxygenase activity. The basal cell-enriched fractions had the highest activity. With increasing differentiation of the cells, decreased biosynthetic activity was observed. These results indicate that undifferentiated keratinocytes, that is, the basal cells, may be an important source of prostaglandins and 12-HETE but are not a source of leukotrienes for the hairless mouse. It also suggests a role for keratinocyte-derived eicosanoids in the normal physiology of epidermal differentiation.  相似文献   

14.
Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells are found in different locations - stem cells at the periphery, in the limbus, and TA cells more central. Moreover, the TA cells already express the differentiating corneal-type keratin pair K3/K12, whereas the limbal keratinocytes express the basal keratin pair K5/K14. In contrast, suprabasal epidermal keratinocytes express keratin pair K1-2/K10, and basal keratinocytes the keratin pair K5/K14. The results of tissue recombination experiments show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. First, the cells located at the base of the corneal epithelium show a decrease in expression of K12 keratin, followed by an increase in K5 expression; they then proliferate and form hair follicles. The first K10 expressing cells appear at the junction of the new hair follicles and the covering corneal epithelium. Their expansion finally gives rise to epidermal strata, which displace the corneal suprabasal keratinocytes. Corneal TA cells can thus be reprogrammed to form epidermal cells, first by reverting to a basal epithelial-type, then to hair pegs and probably concomitantly to hair stem cells. This confirms the role of the hair as the main reservoir of epidermal stem cells and raises the question of the nature of the dermal messages which are both involved in hair induction and stem cell specification.  相似文献   

15.
Primary cultures of human keratinocytes form a multilayered tissue. By incubating the tissue cultures in Ca2(+)-free medium the differentiated cell layers can be stripped off leaving a basal cell monolayer. We have developed a method for high-frequency transfection of these epidermal basal cells with genes inserted into Epstein-Barr virus-based expression vectors. Using the Escherichia coli lac z gene as a marker gene, the transient and long-term expression and the fate of the transfected cells were studied. During regeneration of the multilayered tissue most of the transfected basal cells enlarge and undergo differentiation, but a minor population remains as basal cells. Incubation with the tumor promotor 12-O-tetradecanoylphorbol-13-acetate results in an increase in the proportion of transfected keratinocytes that are small, suggesting a relative expansion of the immature cell pool.  相似文献   

16.
Abstract. Epidermal cells were harvested from the dorsal skin of adult mice by trypsinization and were sedimented through continuous density gradients of Percoll, formulated to separate basal cells of different buoyant density. Five fractions from the gradients were characterized with regard to the number of cells present, their viability and morphology and their basal origin. Suprabasal keratinocytes remained primarily at the top of the gradient; basal keratinocytes sedimented throughout. With increasing density, a relative enrichment was observed: (i) for [3H]-thymidine and [3H]-benzo[a]pyrene label-retaining (slowly cycling) keratinocytes; (ii) for keratinocytes that could proliferate in vitro in the continuous presence of 0–1 μ g ml-1 of 12-0-tetradecanoylphorbol-13-acetate; (iii) for cells from untreated as well as initiated epidermis able to proliferate under conditions where calcium induces terminal differentiation; and (iv) for primary in vitro clonogenic keratinocytes from normal epidermis. The relative enrichment for epidermal basal cells having characteristics thought to be associated with immaturity and with the initiation and promotion of skin carcinogenesis suggests that density gradient sedimentation could be used in conjunction with other methods for the eventual purification of epidermal progenitors.  相似文献   

17.
《The Journal of cell biology》1996,135(6):1879-1887
The Distal-less-related homeodomain gene Dlx3 is expressed in terminally differentiated murine epidermal cells. Ectopic expression of this gene in the basal cell layer of transgenic skin results in a severely abnormal epidermal phenotype and leads to perinatal lethality. The basal cells of affected mice ceased to proliferate, and expressed the profilaggrin and loricrin genes which are normally transcribed only in the latest stages of epidermal differentiation. All suprabasal cell types were diminished and the stratum corneum was reduced to a single layer. These data indicate that Dlx3 misexpression results in transformation of basal cells into more differentiated keratinocytes, suggesting that this homeoprotein is an important regulator of epidermal differentiation.  相似文献   

18.
Summary Human epidermal keratinocytes grown in culture and at different stages of differentiation are shown to be viably separated by elutriation. A specific fraction enriched in melanocytes was obtained. Elutriation of cells obtained fromin vitro cultured epithlium could prove useful in studies concerning the biochemistry and molecular markers of cells isolated from normal epithelium and from different pathologies.  相似文献   

19.
Cultures of epidermal keratinocytes contain two populations of cells, a basal undifferentiated population and a suprabasal terminally differentiated population. When exposed to wild-type adenovirus type 2 (wtAd2), the suprabasal cells are positive by immunofluorescence for capsid antigen and exhibit cytopathic effects (CPE) (R.F. LaPorta, and L.B. Taichman, Virology 110:137-146, 1981). The basal cells, although infected, are not positive for capsid antigen and do not display CPE. Despite CPE and capsid antigens in suprabasal cells, yields of virus from the entire culture are very low (10 PFU per cell). These observations suggest that Ad2 expression is restricted at different times in the viral life cycle in basal and suprabasal cells. To test this hypothesis, we isolated host range (hr) mutants of Ad2 on two lines of squamous cell carcinoma (SCC) keratinocytes which were shown to be restrictive for wtAd2 replication. The hrAd2 mutants produced high yields of progeny virus in epidermal cell cultures (500 to 600 PFU per cell). However, the pattern of CPE induction in these cultures was like that produced by wtAd2, i.e., basal cells were CPE negative and suprabasal cells were CPE positive. The high yield of hrAd2 progeny indicated that the restriction present in suprabasal cells was overcome. However, the failure of hrAd2 mutants to induce CPE in basal cells indicated that the hrAd2 mutants remain restricted in the basal population and supported our hypothesis that a second and distinct restriction exists in basal keratinocytes.  相似文献   

20.
Summary The epidermis shows a distinctive pattern of differentiation wherein keratinocytes proliferate in the basal cell layer and mature into spinous and granular cells. Using a discontinuous density-gradient centrifugation method, guinea-pig keratinocytes were separated into high (HDF), intermediate (IDF), and low (LDF) density fractions. Morphological and flow cytometrical observations demonstrated that HDF, IDF, and LDF were basal, spinous, and granular cell-rich fractions, respectively. Membrane fluidity of the fractionated keratinocytes was measured by diphenylhexatriene fluorescence polarization. Polarization (p)-value of keratinocytes was negatively correlated with temperature. At each temperature, HDF cells showed a lower p-value than IDF or HDF cells except at 40° C. Since a low p-value indicates a high degree of Brownian motion, membrane fluidity is higher in basal cells and lower in spinous and granular cells. Our results indicate that membrane fluidity of guinea-pig keratinocytes decreases during their maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号