首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have screened for dominant enhancers and suppressors of the wing phenotype associated with two Delta alleles: Dl 9P39, an amorphic allele, and Dl FE32, an antimorphic allele. The interactions of some of the modifiers with Delta are due to haplo-insufficient expression of the corresponding genes. Although not explicitly shown for the remaining cases, we assume that haploin-sufficiency is also the basis for the relationships of these genes to Delta, since no allele specific interactions were observed. The modifiers found define 22 genes with pleiotropic expression, which can be classified into two groups: genes required for wing vein pattern formation and for neurogenesis, and genes which are not required for neurogenesis. Among the genes of the first group, Hairless and Star were previously known to participate in neural development. One further modifier was found which may correspond to a new neurogenic gene. The second group of genes is larger and includes already known loci, e.g., Plexate, blistered, plexus, etc, as well as other previously unidentified genes, which function during wing morphogenesis. Correspondence to: J.A. Campos-Ortega  相似文献   

2.
The neurogenic ectoderm ofDrosophila melanogaster consists of the ventral neuroectoderm and the procephalic neuroectoderm. It is hypothesized that epidermal and central neural progenitor cells separate from each other in three steps: conference on the neuroectodermal cells the capability of producing neural or epidermal progenies, separation of the two classes of progenitor cells, and specification of particular types of neuroblasts and epidermoblasts. Separation of neuroblasts and epidermoblasts in controlled by proneural and neurogenic genes.Delta andNotch serve as mediators of direct protein-protein interactions. E(spl)-C inhibits neurogenesis, creating epidermal cells. The achaete-scute complex (AS-C) controls the commitment of nonoverlapping populations of neuroblasts and leads the development of neuroectodermal cells as neuroblasts.  相似文献   

3.
Summary In Drosophila, mutations in a class of genes, the neurogenic genes, produce an excess of neurons. This neural hyperplasia has been attributed to the formation of more than the normal number of neuronal precursor cells at the expense of epidermal cells. In order to find out whether the neurogenic genes only act at this intial step of neurogenesis, we studied the replication pattern of the sensory organ precursor cells by monitoring BrdU incorporation in embryos mutant for Notch (N), Delta (Dl), mastermind (mam), almondex (amx), neuralized (neu), big brain (bib) and the Enhancer of split-Complex (E(spl)-C). Using temperature sensitive alleles of two of the neurogenic genes, DI and N, we also induced an acute increase of replicating sensory precursors by shifting briefly to the restricted temperature. We have found that the loss of function of all the seven neurogenic loci that were tested causes an increase in replicating sensory precursor cells, consistent with the model that these neurogenic genes normally participate in the process of restricting the number of neuronal precursors. Whereas the temporal pattern of replication appeared normal in mutants of five of the seven neurogenic loci, in N and mam embryos replicating PNS cells are present beyond the time when they normally undergo replication. Experiments with colchicine suggest that many of these late replicating cells may be newly emerging precursors and probably not additional cell divisions of already recruited precursors. Thus, different neurogenic genes may be required over different periods of time for the specification of sensory precursor cells. Correspondence to: R. Bodmer  相似文献   

4.
Summary The gene master mind (mam) is located in bands 50C23-D1 of the second chromosome of Drosophila melanogaster. mam is one of the neurogenic genes, whose function is necessary for a normal segregation of neural and epidermal lineages during embryonic development. Loss of function of any of the neurogenic genes results in a mis-routeing into neurogenesis of cells that normally would have given rise to epidermis. We describe here the molecular cloning of 198 kb of genomic DNA containing the mam gene. Ten different mam mutations (point mutants and chromosomal aberrations) have been mapped within 45 kb of the genomic walk. One of the mutations, an insertion of a P-element, was originally recovered from a dysgenic cross. Four different wild-type revertants of this mutation were characterized at the molecular level and, although modifications of the insertions were found, in no case was the transposon completely excised. An unusually high number of the repetitive opa sequence, and of an additional previously unknown element, which we have called N repeat, are scattered throughout the 45 kb where the mam mutations map. The functional significance of these repeats is unknown.  相似文献   

5.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

6.
Notch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla. The neuroepithelial cells in the optic lobe in Notch or Delta mutant brains do not expand but instead differentiate prematurely into medulla neuroblasts, which lead to premature neurogenesis in the medulla. Clonal analyses of loss-of-function alleles for the pathway components, including N, Dl, Su(H), and E(spl)-C, indicate that the Delta/Notch/Su(H) pathway is required for both maintaining the neuroepithelial stem cells and inhibiting medulla neuroblast formation while E(spl)-C is only required for some aspects of the inhibition of medulla neuroblast formation. Conversely, Notch pathway overactivation promotes neuroepithelial cell expansion while suppressing medulla neuroblast formation and neurogenesis; numb loss of function mimics Notch overactivation, suggesting that Numb may inhibit Notch signaling activity in the optic lobe neuroepithelial cells. Thus, our results show that Notch signaling plays a dual role in optic lobe development, by maintaining the neuroepithelial stem cells and promoting their expansion while inhibiting their differentiation into medulla neuroblasts. These roles of Notch signaling are strikingly similar to those of the JAK/STAT pathway in optic lobe development, raising the possibility that these pathways may collaborate to control neuroepithelial stem cell maintenance and expansion, and their differentiation into the progenitor cells.  相似文献   

7.
Summary The role of the achaete-scute complex and extramacrochaetae, Notch, Delta, Enhancer of split and Hairless genes in chaeta patterning in Drosophila tergites was studied in genetic mosaics and in mutant combinations. The mutant phenotypes of different alleles of each gene can be ordered in characteristic topographical seriations. These seriations are related to the pattern of proliferation of histoblasts and the time of singularization of sensory organ mother cells from surrounding epidermal cells. Genetic mosaics of lethal alleles show that these genes are fundamentally involved in this singularization and subsequent differentiation. The study of mutant combinations of alleles of these genes reveals specific relationships of epistasis and synergism between them. The results suggest that spatial and temporal variations in achaete-scute complex functional products in cells, modulated by the activity of other genes involved in signal transduction, define the patterned differentiation of sensory organs in tergites. Offprint requests to: A. García-Bellido  相似文献   

8.
9.
The tantalus (tan) gene encodes a protein that interacts specifically with the Polycomb/trithorax group protein Additional sex combs (ASX). Both loss-of-function and gain-of-function mutations in tan cause tissue-specific defects in the eyes, wing veins and bristles of adult flies. As these defects are also typical for components of the Notch (N) signalling pathway, we wished to determine if TAN interacts with this pathway. Through careful examination of ectopic tan phenotypes, we find that TAN specifically disrupts all three major processes associated with the N signalling pathway (boundary formation, lateral inhibition, and lineage decisions). Furthermore, ectopic tan expression abolishes expression of two N target genes, wingless (wg) and cut, at the dorsal-ventral boundary of the wing. An interaction between tan and N was also observed using a genetic assay that previously detected interactions between tan and Asx. The previously observed ability of TAN to move between the cytoplasm and nucleus, and to associate with DNA, provides a potential mechanism for TAN to respond to N signalling.Edited by P. Simpson  相似文献   

10.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis.  相似文献   

11.
Summary Several genetic loci have been implicated in the formation of the peripheral nervous system during Drosophila embryogenesis. As a first step towards understanding the functional interrelationships between these genes, we have searched for dominant interactions between deficiencies for the achaete-scute complex (AS-C), daughterless (da) and six other regions necessary for peripheral neurogenesis in the embryo. We have found that adult flies doubly heterozygous for deletions of AS-C and of da, or of AS-C and a small region on the fourth chromosome, exhibit characteristic bristle defects, suggesting that these genes cooperate to form sense organs both in the embryo and in the adult.  相似文献   

12.
Mutations in severalPolycomb (Pc) group genes cause maternal-effect or zygotic segmentation defects, suggesting thatPc group genes may regulate the segmentation genes ofDrosophila. We show that individuals doubly heterozygous for mutations inpolyhomeotic and six otherPc group genes show gap, pair rule, and segment polarity segmentation defects. We examined double heterozygous combinations ofPc group and segmentation mutations for enhancement of adult and embryonic segmentation defects.Posterior sex combs andpolyhomeotic interact withKrüppel 2 and enhance embryonic phenotypes ofhunchback andknirps, andpolyhomeotic enhanceseven-skipped. Surprisingly, flies carrying duplications ofextra sex combs (esc), that were heterozygous for mutations ofeven-skipped (eve), were extremely subvital. Embryos and surviving adults of this genotype showed strong segmentation defects in even-numbered segments. Antibody studies confirm that expression ofeve is suppressed by duplications ofesc. However,esc duplications have no effect on other gap or pair rule genes tested. To our knowledge, this is only the second triplo-abnormal phenotype associated withPc group genes. Duplications of nine otherPc group genes have no detectable effect oneve. Expression ofengrailed (en) was abnormal in the central nervous systems of mostPc group mutants. These results support a role forPc genes in regulation of some segmentation genes, and suggest thatesc may act differently from otherPc group genes.  相似文献   

13.
14.
Powdery mildew, caused byEryisphe graminis f. sp.hordei, is one of the most important diseases of barley (Hordeum vulgare). A number of loci conditioning resistance to this disease have been reported previously. The objective of this study was to use molecular markers to identify chromosomal regions containing genes for powdery mildew resistance and to estimate the resistance effect of each locus. A set of 28 F1 hybrids and eight parental lines from a barley diallel study was inoculated with each of five isolates ofE. graminis. The parents were surveyed for restriction fragment length polymorphisms (RFLPs) at 84 marker loci that cover about 1100 cM of the barley genome. The RFLP genotypes of the F1s were deduced from those of the parents. A total of 27 loci, distributed on six of the seven barley chromosomes, detected significant resistance effects to at least one of the five isolates. Almost all the chromosomal regions previously reported to carry genes for powdery mildew resistance were detected, plus the possible existence of 1 additional locus on chromosome 7. The analysis indicated that additive genetic effects are the most important component in conditioning powdery mildew resistance. However, there is also a considerable amount of dominance effects at most loci, and even overdominance is likely to be present at a number of loci. These results suggest that quantitative differences are likely to exist among alleles even at loci which are considered to carry major genes for resistance, and minor effects may be prevalent in cultivars that are not known to carry major genes for resistance.  相似文献   

15.
Quorum-sensing in Rhizobium   总被引:7,自引:0,他引:7  
Quorum-sensing signals are found in many species of legume-nodulating rhizobia. In a well-characterized strain of R. leguminosarum biovar viciae, a variety of autoinducers are synthesised, and all have been identified as N-acyl-homoserine lactones. One of these N-acyl-homoserine lactones, is N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone, previously known as small bacteriocin, which inhibits the growth of several R. leguminosarum strains. The cinRI locus is responsible for the production of small bacteriocin. CinR induces cinI in response to the AHL made by CinI, thus forming a positive autoregulatory induction loop. A complex cascade of quorum-sensing loops was characterized, in which the cinIR locus appears to be the master control for three other AHL-dependent quorum-sensing control systems. These systems include the raiI/raiR, traI/triR and rhiI/rhiR. Other rhizobial strains appear to share some of these quorum sensing loci, but not all loci are found in all strains. Small bacteriocin along with the other N-acyl-homoserine lactones produced by these three AHL-based control systems regulate (i) growth inhibition of sensitive strains, (ii) transfer of the symbiotic plasmid pRL1JI, and (iii) expression of the rhizosphere-expressed (rhi) genes that influence nodulation. Some of the genes regulated by these systems have been identified. While the functions of some, such as the trb operon regulated by triR are clear, several of the regulated genes have no homologues of known function. It is anticipated that several other genes regulated by these systems have yet to be identified. Therefore, despite the regulation of one of the most complex quorum-sensing cascade being understood, several of the functions regulated by the quorum-sensing genes remain to be elucidated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Only eight genes are known to be involved in the phototropic response of Phycomyces (madA-H). Mutants affected in these genes have played a major role in the analysis of photosensory transduction processes in this system. A set of new mutants isolated by Alvarez et al. (1989) that are unable to bend towards dim unilateral blue light were studied by complementation and recombination. Two of these mutants have mutations in madE, one has a mutation in madF and one is a double madE madF mutant. The three remaining mutants tested did not complement each other and showed positive complementation with strains carrying mutations in the genes madA, madB, and madC, indicating that they carried mutations in a new gene designated madI. Recombination analysis showed that madI is unlinked to madA, madB and madC.  相似文献   

17.
18.
The Polycomb (Pc) group of genes are required for maintenance of cell determination in Drosophila melanogaster. At least 11 Pc group genes have been described and there may be up to 40; all are required for normal regulation of homeotic genes, but as a group, their phenotypes are rather diverse. It has been suggested that the products of Pc group genes might be members of a heteromeric complex that acts to regulate the chromatin structure of target loci. We examined the phenotypes of adult flies heterozygous for every pairwise combination of Pc group genes in an attempt to subdivide the Pc group functionally. The results support the idea that Additional sex combs (Asx), Pc, Polycomblike (Pcl), Posterior sex combs (Psc), Sex combs on midleg (Scm), and Sex combs extra (Sce) have similar functions in some imaginal tissues. We show genetic interactions among extra sex combs (esc) and Asx, Enhancer of Pc, Pcl, Enhancer of zeste E(z), and super sex combs and reassess the idea that most Pc group genes function independently of esc. Most duplications of Pc group genes neither exhibit anterior transformations nor suppress the extra sex comb phenotype of Pc group mutations, suggesting that not all Pc group genes behave as predicted by the mass-action model. Surprisingly, duplications of E(z) enhance homeotic phenotypes of esc mutants. Flies with increasing doses of esc + exhibit anterior transformations, but these are not enhanced by mutations in trithorax group genes. The results are discussed with respect to current models of Pc group function.  相似文献   

19.
20.
Cytological observations have shown that the presence of unstable minichromosomes can delay progression through the early stages of mitosis in fission yeast (Schizosaccharomyces pombe), suggesting that such minichromosomes may provide a useful tool for examining the system that regulates the coordinated segregation of chromosomes. One such unstable minichromosome is a large circular minichromosome. We previously showed that the mitotic instability of this minichromosome is probably due to the frequent occurrence of catenated forms of DNA after replication. To identify genes involved in the regulation of chromosome behavior in mitosis, we isolated mutants which stabilized this minichromosome. Three loci (stal, sta2, and sta3) were identified. Two of them were found to be suppressors of temperature-sensitive mutations in cdc2, which encodes the catalytic subunit of muturation promoting factor (MPF). They show no linkage to, and are thus different from, sucl, and cdc13, previously identified as genes that interact with cdc2. The other mutation mapped to a gene previously identified as being required for the correct formation of the mitotic spindle. Data provided in this study suggest that the sta genes are involved in the regulation of spindle dynamics to ensure proper chromosome segregation during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号