首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Short DNA sequence motifs have been identified in viral and cellular enhancers which represent the binding sites for a variety of trans- acting factors. One such HeLa cell factor, EBP1, has been purified and shown to bind to sequences in the SV40 enhancer. The PRDII element in the human beta-interferon gene regulatory element (IRE) shows strong sequence similarity to the EBP1 binding site in the SV40 enhancer. We demonstrate here that EBP1 binds to its sites in the SV40 enhancer and IRE in a similar manner, making base specific contacts over one complete turn of the DNA double helix. Mutational analysis of the EBP1 sites in the IRE and SV40 enhancer has identified the DNA sequence requirements necessary for specific EBP1/DNA complex formation. In addition, 34 DNA sequences related to the EBP1 binding site were analysed for their ability to bind EBP1. Sequences constituting high affinity binding sites possess the sequence 5'-GG(N)6CC-3'. Single base pair changes in the region between the conserved Gs and Cs can generally be tolerated although it is clear that these intervening bases contribute to binding affinity. Mutations in the recognition site which could lead to gross structural changes in the DNA abolish EBP1 binding.  相似文献   

6.
7.
8.
Stimulation of the NF-kappaB pathway often causes p65-p50 and p50-p50 dimers to be simultaneously present in the cell nucleus. A natural polymorphism at nucleotide -863 in the human TNF promoter (encoding tumor necrosis factor [TNF]) region provides an opportunity to dissect the functional interaction of p65-p50 and p50-p50 at a single NF-kappaB binding site. We found that this site normally binds both p65-p50 and p50-p50, but a single base change specifically inhibits p50-p50 binding. Reporter gene analysis in COS-7 cells expressing both p65-p50 and p50-p50 shows that the ability to bind p50-p50 reduces the enhancer effect of this NF-kappaB site. Using an adenoviral reporter assay, we found that the variant which binds p50-p50 results in a reduction of lipopolysaccharide-inducible gene expression in primary human monocytes. This finding adds to a growing body of experimental evidence that p50-p50 can inhibit the transactivating effects of p65-p50 and illustrates the potential for genetic modulation of inflammatory gene regulation in humans by subtle nucleotide changes that alter the relative binding affinities of different forms of the NF-kappaB complex.  相似文献   

9.
10.
11.
The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. The levels of the MyNF1s increase during early 32D cl3 cell granulocytic differentiation. Both MyNF1 alpha and -beta supershift with an antiserum raised by using a peptide derived from the N terminus of polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) alpha subunit. The specific peptide inhibits these supershifts. In vitro-translated PEBP2/CBF DNA-binding domain binds the murine MPO PEBP2/CBF site. An alternate PEBP2/CBF consensus site, 5'-GACCGCA-3', but not a simian virus 40 enhancer core sequence, 5'-TTCCACA-3', binds the MyNF1s in vitro and activates a minimal murine MPO-thymidine kinase promoter in vivo. The murine neutrophil elastase gene 100-bp 5'-flanking sequences contain several functional elements, including potential binding sites for PU.1, C/EBP, c-Myb, and PEBP2/CBF. The functional element 5'-GGCCACA-3' located at positions -66 to 72 differs from the PEBP2/CBF consensus (5'-PuACCPuCA-3') only by an A-to-G transition at position 2. This DNA element binds MyNF1 alpha and -beta weakly. The N terminis of two PEBP2/CBF alpha subunit family members, PEBP2 alpha A and PEBP2 alpha B (murine AML1), are nearly identical, and 32D c13 cl3 cells contain both corresponding mRNAs. Since t(8;21), t(3;21), and inv(16), associated with myeloid leukemias, disrupt subunits of PEBP2/CBF, we speculate that the resulting oncoproteins, AML1-ETO, AML1-EAP, AML1-Evi1, and CBF beta-MYH11, inhibit early myeloid differentiation.  相似文献   

12.
TEL2 is required for telomere length regulation and viability in Saccharomyces cerevisiae. To investigate the mechanism by which Tel2p regulates telomere length, the majority (65%) of the TEL2 ORF was fused to the 3'-end of the gene for maltose binding protein, expressed in bacteria and the purified protein used in DNA binding studies. Rap1p, the major yeast telomere binding protein, recognizes a 13 bp duplex site 5'-GGTGTGTGGGTGT-3' in yeast telomeric DNA with high affinity. Gel shift experiments revealed that the MBP-Tel2p fusion binds the double-stranded yeast telomeric Rap1p site in a sequence-specific manner. Analysis of mutated sites showed that MBP-Tel2p could bind 5'-GTGTGTGG-3' within this 13 bp site. Methylation interference analysis revealed that Tel2p contacts the 5'-terminal guanine in the major groove. MBP-Tel2p did not bind duplex telomeric DNA repeats from vertebrates, Tetrahymena or Oxytricha. These results suggest that Tel2p is a DNA binding protein that recognizes yeast telomeric DNA.  相似文献   

13.
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can be converted to an RNA cutter that recognizes four bases, with about a 65-nt 3'-truncated tRNA(Arg) or tRNA(Ala). The 3'-truncated tRNA recognizes the target RNA via four base pairings between the 5'terminal sequence and a sequence 1-nt upstream of the cleavage site, resulting in a pre-tRNA-like complex (Nashimoto M, 1995, Nucleic Acids Res 23:3642-3647). Here I developed a general method for more specific RNA cleavage using 3' tRNase. In the presence of a 36-nt 5' half tRNA(Arg) truncated after the anticodon, 3' tRNase cleaved the remaining 56-nt 3' half tRNA(Arg) with a 19-nt 3' trailer after the discriminator. This enzyme also cleaved its derivatives with a 5' extra sequence or nucleotide changes or deletions in the T stem-loop and extra loop regions, although the cleavage efficiency decreases as the degree of structural change increases. This suggests that any target RNA can be cleaved site-specifically by 3'tRNase in the presence of a 5' half tRNA modified to form a pre-tRNA-like complex with the target. Using this method, two partial HIV-1 RNA targets were cleaved site-specifically in vitro. These results also indicate that the sequence and structure of the T stem-loop domain are important, but not essential, for the recognition of pre-tRNAs by 3' tRNase.  相似文献   

14.
The DNA binding of three different NF-kappaB dimers, the p50 and p65 homodimers and the p50/p65 heterodimer, has been examined using a combination of gel mobility shift and fluorescence anisotropy assays. The NF-kappaB p50/p65 heterodimer is shown here to bind the kappaB DNA target site of the immunoglobulin kappa enhancer (Ig-kappaB) with an affinity of approximately 10 nm. The p50 and p65 homodimers bind to the same site with roughly 5- and 15-fold lower affinity, respectively. The nature of the binding isotherms indicates a cooperative mode of binding for all three dimers to the DNA targets. We have further characterized the role of pH, salt, and temperature on the formation of the p50/p65 heterodimer-Ig-kappaB complex. The heterodimer binds to the Ig-kappaB DNA target in a pH-dependent manner, with the highest affinity between pH 7.0 and 7.5. A strong salt-dependent interaction between Ig-kappaB and the p50/p65 heterodimer is observed, with optimum binding occurring at monovalent salt concentrations below 75 mm, with binding becoming virtually nonspecific at a salt concentration of 200 mm. Binding of the heterodimer to DNA was unchanged across a temperature range between 4 degrees C and 42 degrees C. The sensitivity to ionic environment and insensitivity to temperature indicate that NF-kappaB p50/p65 heterodimers form complexes with specific DNA in an entropically driven manner.  相似文献   

15.
A Snowden  Y W Kow  B Van Houten 《Biochemistry》1990,29(31):7251-7259
Using oligonucleotide synthesis, we demonstrate a rapid and efficient method for the construction of DNA duplexes containing defined DNA lesions at specific positions. These DNA lesions include apyrimidinic sites, reduced apyrimidinic sites, and base-damage analogues consisting of O-methyl- or O-benzylhydroxylamine-modified apyrimidinic sites. A 49 base pair DNA duplex containing these lesions was specifically incised by the UvrABC nuclease complex. The incision sites occurred predominantly at the eighth phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion. Multiple incisions were observed 3' to the lesion. The extent of DNA incisions was base-damage analogues greater than reduced apyrimidinic sites greater than apyrimidinic sites. Introduction of 3' or 5' nicks at the site of a base-damage analogue by treatment of these substrates with either endonuclease III or endonuclease IV reduced, but did not abolish, subsequent incision by the UvrABC complex, whereas introduction of a 3' nick at an abasic site increased the incision efficiency of the UvrABC complex. These data demonstrate a convergence of base and nucleotide excision repair pathways in the removal of specific base damages.  相似文献   

16.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

17.
18.
The ETS family members display specific DNA binding site preferences. As an example, PU.1 and ETS-1 recognize different DNA sequences with a core element centered over 5'-GGAA-3' and 5'-GGAA/T-3', respectively. To understand the molecular basis of this recognition, we carried out site-directed mutagenesis experiments followed by DNA binding studies that use electrophoretic mobility shift assay (EMSA) and surface plasmon resonance methods. EMSA experiments identified amino acid changes A231S and/or N236Y as being important for PU.1 recognition of both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. To confirm these data and obtain accurate binding parameters, we performed kinetic studies using surface plasmon resonance on these mutants. The N236Y substitution revealed a weak protein-DNA interaction with the 5'-GGAA-3' containing oligonucleotide caused by a faster release of the protein from the DNA (k(off) tenfold higher than the wild-type protein). With the double mutant A231S-N236Y, we obtained an increase in binding affinity and stability toward both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. We propose that substitution of alanine for serine introduces an oxygen atom that can accept hydrogen and interact with potential water molecules or other atoms to make an energetically favorable hydrogen bond with both 5'-GGAA-3' and 5'-GGAT-3' oligonucleotides. The free energy of dissociation for the double mutant A231S-N236Y with 5'-GGAA-3' (delta deltaG((A231S-N236Y) - (N236Y)) = -1.2 kcal mol confirm the stabilizing effect of this mutant in the protein-DNA complex formation. We conclude that N236Y mutation relaxes the specificity toward 5'-GGAA-3' and 5'-GGAT-3' sequences, while A231S mutation modulates the degree of specificity toward 5'-GGAA-3' and 5'GGAT-3' sequences. This study explains why wild-type PU.1 does not recognize 5'-GGAT-3' sequences and in addition broadens our understanding of 5'-GGAA/T-3' recognition by ETS protein family members.  相似文献   

19.
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('Model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'Model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). One difference between the two models involves Glu181 of CAP. Model I predicts that Glu181 of CAP makes two specificity determining contacts: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site, and one H-bond with the adenine N6 atom of T:A at base pair 6 of the DNA half site. In contrast, Model II predicts that Glu181 makes only one specificity determining contact: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site. In the present work, we show that replacement of T:A at base pair 6 of the DNA half site by T:N6-methyl-adenine has no, or almost no, effect on the binding of CAP. We conclude, contrary to Model I, that Glu181 of CAP makes no contact with the adenine N6 atom of base pair 6 of the DNA half site.  相似文献   

20.
The consensus DNA site for binding of the Escherichia coli catabolite gene activator protein (CAP) is 22 base pairs in length and is 2-fold symmetric: 5'-AAATGTGATCTAGATCACATTT-3'. Positions 4 to 8 of each half of the consensus DNA half-site are the most strongly conserved. In this report, we analyze the effects of substitution of DNA base pairs at positions 4 to 8, the effects of substitution of thymine by uracil and by 5-methylcytosine at positions 4, 6, and 8, and the effect of dam methylation of the 5'-GATC-3' sequence at positions 7 to 10. All DNA sites having substitutions of DNA base pairs at positions 4 to 8 exhibit lower affinities for CAP than does the consensus DNA site, consistent with the proposal that the consensus DNA site is the ideal DNA site for CAP. Specificity for T:A at position 4 appears to be determined solely by the thymine 5-methyl group. Specificity for T:A at position 6 and specificity for A:T at position 8 appear to be determined in part, but not solely, by the thymine 5-methyl group. dam methylation has little effect on CAP.DNA complex formation. The thermodynamically defined consensus DNA site spans 28 base pairs. All, or nearly all, DNA determinants required for maximal affinity for CAP and for maximal thermodynamically defined CAP.DNA ion pair formation are contained within a 28-base pair DNA fragment that has the 22-base pair consensus DNA site at its center. The quantitative data in this report provide base-line thermodynamic data required for detailed investigations of amino acid-base pair and amino acid-phosphate contacts in this protein-DNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号