共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the hallmarks of human immunodeficiency virus type I (HIV-1) infection is the rapid removal of the viral receptor CD4 from the cell surface. This remarkably efficient receptor interference requires the activity of three separate viral proteins: Env, Vpu, and Nef. We have investigated whether this unusually tight interference on cell surface CD4 expression had a more essential function during the viral life cycle than simply preventing superinfection. We now report that the removal of cell surface CD4 is required for optimal virus production by HIV-1. Indeed, maintenance of CD4 surface expression in infected cells lead to a 3-5-fold decrease in viral particle production. This effect was not due to the formation of intracellular complexes between CD4 and the gp160 viral envelope precursor but instead required the presence of CD4 at the cell surface and was specifically mediated by CD4 but not closely related plasma membrane receptors. The finding that CD4 had no significant effect on particle release by a Vpu-deficient variant indicates that CD4 acts by inhibiting the particle release-promoting activity of Vpu. Co-immunoprecipitation experiments further showed that CD4 and Vpu physically interact at the cell surface, suggesting that CD4 might inhibit Vpu activity by disrupting its oligomeric structure. 相似文献
2.
The transmembrane domains (TMDs) of integral membrane proteins do not merely function as membrane anchors but play active roles in many important biological processes. The downregulation of the CD4 coreceptor by the Vpu protein of HIV-1 is a prime example of a process that is dependent on specific properties of TMDs. Here we report the identification of Trp22 in the Vpu TMD and Gly415 in the CD4 TMD as critical determinants of Vpu-induced targeting of CD4 to endoplasmic reticulum (ER)-associated degradation (ERAD). The two residues participate in different aspects of ERAD targeting. Vpu Trp22 is required to prevent assembly of Vpu into an inactive, oligomeric form and to promote CD4 polyubiquitination and subsequent recruitment of the VCP-UFD1L-NPL4 dislocase complex. In the presence of a Vpu Trp22 mutant, CD4 remains integrally associated with the ER membrane, suggesting that dislocation from the ER into the cytosol is impaired. CD4 Gly415, on the other hand, contributes to CD4-Vpu interactions. We also identify two residues, Val20 and Ser23, in the Vpu TMD that mediate retention of Vpu and, by extension, CD4 in the ER. These findings highlight the exploitation of several TMD-mediated mechanisms by HIV-1 Vpu in order to downregulate CD4 and thus promote viral pathogenesis. 相似文献
3.
Maria José Cortés Flossie Wong-Staal Juan Lama 《The Journal of biological chemistry》2002,277(3):1770-1779
The CD4 protein is required for the entry of human immunodeficiency virus (HIV) into target cells. Upon expression of the viral genome, three HIV-1 gene products participate in the removal of the primary viral receptor from the cell surface. To investigate the role of surface-CD4 in HIV replication, we have created a set of Jurkat cell lines which constitutively express surface levels of CD4 comparable to those found in peripheral blood lymphocytes and monocytes. Expression of low levels of CD4 on the surface of producer cells exerted an inhibitory effect on the infectivity of HIV-1 particles, whereas no differences in the amount of cell-free p24 antigen were observed. Higher levels of cell surface CD4 exerted a stronger inhibitory effect on infectivity, and also affected the release of free virus in experiments where the viral genomes were delivered by electrotransfection. The CD4-mediated inhibition of HIV-1 infectivity was not observed in experiments where the vesicular stomatitis virus G protein was used to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. In contrast, inhibition of particle release by high levels of cell-surface CD4 was not overcome by pseudotyping HIV-1 with foreign envelope proteins. Protein analysis of viral particles released from HIV-infected Jurkat-T cells revealed a CD4-dependent reduction in the incorporation of gp120. These results demonstrate that physiological levels of cell-surface CD4 interfere with HIV-1 replication in T cells by a mechanism that inhibits envelope incorporation into viral membranes, and therefore provide an explanation for the need to down-modulate the viral receptor in infected cells. Our findings have important implications for the spread of HIV in vivo and suggest that the CD4 down-modulation function may be an alternative target for therapeutic intervention. 相似文献
4.
5.
Sol-Foulon N Esnault C Percherancier Y Porrot F Metais-Cunha P Bachelerie F Schwartz O 《The Journal of biological chemistry》2004,279(30):31398-31408
The HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication. 相似文献
6.
Two strains of human immunodeficiency virus type 1 (HIV-1) expressing different reporters, human placental alkaline phosphatase (PLAP) and murine heat stable antigen (HSA, CD24), were used for dual infection. Flow cytometric analysis enabled us to distinguish cells not only infected with individual reporter virus but also superinfected with both reporter viruses. When the CD4 positive T cell line, PM1, was dually infected by both reporter viruses with different coreceptor utilization, coinfection with CXCR4-tropic HIV-1 (X4 HIV-1) expressing one reporter increased the rate of cells infected with HIV-1 expressing another reporter. This enhancement was accompanied by an increased level of p24 antigen Gag in culture supernatant, indicating that infectivity of HIV-1 was augmented by X4 HIV-1 coinfection. The CXCR4 antagonist, T140 eliminated this enhancement, suggesting the role of X4 envelope via CXCR4. These results imply the role of X4 HIV-1 at the late stage of infection. 相似文献
7.
Javier G. Magadán F. Javier Pérez-Victoria Rachid Sougrat Yihong Ye Klaus Strebel Juan S. Bonifacino 《PLoS pathogens》2010,6(4)
A key function of the Vpu protein of HIV-1 is the targeting of newly-synthesized CD4 for proteasomal degradation. This function has been proposed to occur by a mechanism that is fundamentally distinct from the cellular ER-associated degradation (ERAD) pathway. However, using a combination of genetic, biochemical and morphological methodologies, we find that CD4 degradation induced by Vpu is dependent on a key component of the ERAD machinery, the VCP-UFD1L-NPL4 complex, as well as on SCFβ-TrCP-dependent ubiquitination of the CD4 cytosolic tail on lysine and serine/threonine residues. When degradation of CD4 is blocked by either inactivation of the VCP-UFD1L-NPL4 complex or prevention of CD4 ubiquitination, Vpu still retains the bulk of CD4 in the ER mainly through transmembrane domain interactions. Addition of a strong ER export signal from the VSV-G protein overrides this retention. Thus, Vpu exerts two distinct activities in the process of downregulating CD4: ER retention followed by targeting to late stages of ERAD. The multiple levels at which Vpu engages these cellular quality control mechanisms underscore the importance of ensuring profound suppression of CD4 to the life cycle of HIV-1. 相似文献
8.
Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection 总被引:3,自引:0,他引:3
Gurney KB Colantonio AD Blom B Spits H Uittenbogaart CH 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(12):7269-7276
Plasmacytoid dendritic cells (pDC) are the principal producers of IFN-alpha in response to viral infection. Because pDC are present in the thymus, we investigated the consequences of HIV-1-induced IFN-alpha production by thymic pDC. We observed that thymic pDC as well as thymocytes express intracellular IFN-alpha upon infection with HIV-1. However, only the pDC could suppress HIV-1 replication, because depletion of pDC resulted in enhancement of HIV-1 replication in thymocytes. Thymic pDC could also produce IFN-alpha in response to CpG oligonucleotides, consistent with the observations of others that peripheral pDC produce IFN-alpha upon engagement of TLR-9. Importantly, CpG considerably increased IFN-alpha production induced by HIV-1, and addition of CpG during HIV-1 infection enhanced expression of the IFN response protein MxA in thymocytes and strongly reduced HIV-replication. Our data indicate that thymic pDC modulate HIV-1 replication through secretion of IFN-alpha. The degree of inhibition depends on the level of IFN-alpha produced by the thymic pDC. 相似文献
9.
Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. 总被引:13,自引:0,他引:13
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) infection decreases the cell-surface expression of its cellular receptor, CD4, through the combined actions of Nef, Env and Vpu. Such functional convergence strongly suggests that CD4 downregulation is critical for optimal viral replication, yet the significance of this phenomenon has so far remained a puzzle. RESULTS: We show that high levels of CD4 on the surface of HIV-infected cells induce a dramatic reduction in the infectivity of released virions by the sequestering of the viral envelope by CD4. CD4 is able to accumulate in viral particles while at the same time blocking incorporation of Env into the virion. Nef and Vpu, through their ability to downregulate CD4, counteract this effect. CONCLUSIONS: The CD4-mediated 'envelope interference' described here probably explains the plurality of mechanisms developed by HIV to downregulate the cell-surface expression of its receptor. 相似文献
10.
Rajesh Abraham Jacob Cassandra R. Edgar Jrmie Prvost Steven M. Trothen Antony Lurie Mitchell J. Mumby Alexa Galbraith Frank Kirchhoff S.M. Mansour Haeryfar Andrs Finzi Jimmy D. Dikeakos 《The Journal of biological chemistry》2021,297(3)
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells. 相似文献
11.
While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model. 相似文献
12.
CD4-derived synthetic peptide blocks the binding of HIV-1 GP120 to CD4-bearing cells and prevents HIV-1 infection 总被引:5,自引:0,他引:5
O Shapira-Nahor H Golding L K Vujcic S Resto-Ruiz R L Fields F A Robey 《Cellular immunology》1990,128(1):101-117
The T cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. In order to identify primary sequences within the CD4 molecule that may be involved in the binding of the HIV-I envelope, we synthesized various peptides corresponding to the V1, V2, V3, and V4 domains of CD4. We tested the ability of these peptides to block the binding of purified HIV-I gp120 to CD4+ human lymphoblastic leukemia cells (CEM) using fluorescence-activated cell sorting. One of these peptides, corresponding to CD4 amino acids (74-95), when preincubated with gp120, blocked its subsequent binding to CEM cells by 80%. A truncated form of this peptide (81-95), was found to be as efficient as the longer peptide (74-95) in inhibiting the binding of gp120 to CEM cells. The same peptide did not block the binding of OKT4A or Leu3A anti-CD4 monoclonal antibodies, which were previously shown to block HIV-I binding to CD4. The peptides were also tested for their ability to block HIV-I infection of a T cell line in vitro. Only CD4 peptide (74-95) and the shorter fragment (81-95) succeeded in protecting T cells against infection with different HIV-I strains. All the other peptides examined had no effect on gp120 binding to CEM cells and did not block syncytia formation. Goat polyclonal antibodies against the CD4 peptide (74-95) gave modest interference of gp120 binding to CEM cells. These data suggest that the CD4 region (74-95) participates in the CD4-mediated binding and/or internalization of HIV-I virion. 相似文献
13.
14.
Infection of CD4+ memory T cells by HIV-1 requires expression of phosphodiesterase 4 总被引:2,自引:0,他引:2
Sun Y Li L Lau F Beavo JA Clark EA 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(4):1755-1761
15.
Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. 总被引:1,自引:14,他引:1 下载免费PDF全文
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus (HIV) receptor for infection of human host cells. We have recently demonstrated that Vpu, an HIV type 1 (HIV-1) encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. In this report, we describe an in vitro model system that allowed us to define important parameters for Vpu-dependent CD4 degradation. The rate of CD4 decay in rabbit reticulocyte lysate was approximately one-third of that observed previously in tissue culture experiments in the presence of Vpu (40 versus 12 min) and required no other HIV-1 encoded proteins. Degradation was contingent on the presence of microsomal membranes in the assay and the coexpression of Vpu and CD4 in the same membrane compartment. By using the in vitro degradation assay, the effects of specific mutations in CD4, including C-terminal truncations and glycosylation mutants, were analyzed. The results of these experiments indicate that Vpu has the capacity to induce degradation of glycosylated as well as nonglycosylated membrane-associated CD4. Truncation of 13 C-terminal amino acids of CD4 did not affect the ability of Vpu to induce its degradation. However, the removal of 32 amino acids from the C-terminus of CD4 completely abolished sensitivity to Vpu. This suggests that Vpu targets specific sequences in the cytoplasmic domain of CD4 to induce its degradation. We also analyzed the effects of mutations in Vpu on its biological activity in the in vitro CD4 degradation assay. The results of these experiments suggest that sequences critical for this function of Vpu are located in its hydrophilic C-terminal domain. 相似文献
16.
Varela-Rohena A Molloy PE Dunn SM Li Y Suhoski MM Carroll RG Milicic A Mahon T Sutton DH Laugel B Moysey R Cameron BJ Vuidepot A Purbhoo MA Cole DK Phillips RE June CH Jakobsen BK Sewell AK Riley JL 《Nature medicine》2008,14(12):1390-1395
HIV's considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A(*)02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (K(D) < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy. 相似文献
17.
Yibo Ding Desheng Kong Dan Li Yuanyuan Zhang Kunxue Hong Hua Liang Liying Ma 《Microbes and infection / Institut Pasteur》2021,23(4-5):104805
Antibody-dependent cellular cytotoxicity (ADCC) is essential for reducing the reservoir of latent virus in persons living with HIV-1 (PLWH). This study evaluated the plasma's ADCC activity from treatment-naïve PLWH based on target cells with or without CD4 molecules. We found that the distribution of plasma activities to mediate ADCC is different between 8E5 cells (CD4-) and NL4-3-infected CEM.NKR.CCR5 cells (CD4+). There was no correlation between the IgG-binding ability and ADCC activity. The binding ability of the 8E5 cells (2.2%) to A32 antibody was significantly lower than that of CEM.NKR.CCR5 cells (69.3%). After incubating the 8E5 cells with CD4-mimetic compound, it did not increase the binding ability with the A32 antibody. After incubation with CD4+ T cells, the binding ability of the 8E5 cells for the A32 antibody increased significantly, which implies that the conformation of the Env protein open and expose the CD4-induced epitopes. The effect of the ADCC in plasma directly applied to 8E5 cells was positively correlated with that of the NL4-3-infected CEM.NKR.CCR5 cells. In conclusion, ADCC induction in plasma was general in the treatment-naïve PLWH. The ADCC activity levels differed when target cells with or without CD4 molecules were evaluated; When designing experiments on ADCC, full consideration should be given to this immune phenomenon. 相似文献
18.
Ribeiro RM 《Immunology and cell biology》2007,85(4):287-294
Mathematical modeling is becoming established in the immunologist's toolbox as a method to gain insight into the dynamics of the immune response and its components. No more so than in the case of the study of human immunodeficiency virus (HIV) infection, where earlier work on the viral dynamics brought significant advances in our understanding of HIV replication and evolution. Here, I review different areas of the study of the dynamics of CD4+ T cells in the setting of HIV, where modeling played important and diverse roles in helping us understand CD4+ T-cell homeostasis and the effect of HIV infection. As the experimental techniques become more accurate and quantitative, modeling should play a more important part in both experimental design and data analysis. 相似文献
19.
Preferential apoptosis of HIV-1-specific CD4+ T cells 总被引:4,自引:0,他引:4
Yue FY Kovacs CM Dimayuga RC Gu XX Parks P Kaul R Ostrowski MA 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(4):2196-2204
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication. 相似文献
20.
Suzanne Pickering Stephane Hué Eun-Young Kim Susheel Reddy Steven M. Wolinsky Stuart J. D. Neil 《PLoS pathogens》2014,10(1)
The HIV-1 Vpu protein is expressed from a bi-cistronic message late in the viral life cycle. It functions during viral assembly to maximise infectious virus release by targeting CD4 for proteosomal degradation and counteracting the antiviral protein tetherin (BST2/CD317). Single genome analysis of vpu repertoires throughout infection in 14 individuals infected with HIV-1 clade B revealed extensive amino acid diversity of the Vpu protein. For the most part, this variation in Vpu increases over the course of infection and is associated with predicted epitopes of the individual''s MHC class I haplotype, suggesting CD8+ T cell pressure is the major driver of Vpu sequence diversity within the host. Despite this variability, the Vpu functions of targeting CD4 and counteracting both physical virus restriction and NF-κB activation by tetherin are rigorously maintained throughout HIV-1 infection. Only a minority of circulating alleles bear lesions in either of these activities at any given time, suggesting functional Vpu mutants are heavily selected against even at later stages of infection. Comparison of Vpu proteins defective for one or several functions reveals novel determinants of CD4 downregulation, counteraction of tetherin restriction, and inhibition of NF-κB signalling. These data affirm the importance of Vpu functions for in vivo persistence of HIV-1 within infected individuals, not simply for transmission, and highlight its potential as a target for antiviral therapy. 相似文献