首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Mediterranean coastal sand dunes are characterized by both very stressful environmental conditions and intense human pressure. This work aims to separate the relative contributions of environmental and human factors in determining the presence/abundance of native and alien plant species in such an extreme environment at a regional scale. Location 250 km of the Italian Tyrrhenian coast (Region Lazio). Methods We analysed alien and native plant richness and fitted generalized additive models in a multimodel‐inference framework with comprehensive randomizations to evaluate the relative contribution of environmental and human correlates in explaining the observed patterns. Results Native and alien richness are positively correlated, but different variables influence their spatial patterns. For natives, human population density is the most important factor and is negatively related to richness. Numbers of natives are unexpectedly lower in areas with a high proportion of natural land cover (probably attributable to local farming practices) and, to a lesser degree, affected by the movement of the coastline. On the other hand, alien species richness is strongly related to climatic factors, and more aliens are found in sectors with high rainfall. Secondarily, alien introductions appear to be related to recent urban sprawl and associated gardening. Main conclusions Well‐adapted native species in a fragile equilibrium with their natural environment are extremely sensitive to human‐driven modifications. On the contrary, for more generalist alien species, the availability of limited resources plays a predominant role.  相似文献   

2.
Abstract. Patterns of species richness in a managed forest were related to ecological factors at two spatial scales. Local variables within a plot (5 m × 5 m) included 13 soil classes and nine stand classes. Neighbourhood variables were defined within a 25 m radius from the focal plot and were measured using a Neighbourhood Diversity Index (NDI - total diversity of different stand classes) and nine Neighbourhood Scores (NS - relative dominance of a given stand class). 224 species were registered in the survey of which 138 were true forest species. Local parameters (stand and soil class) were weak predictors of total and forest species richness. High total and forest species richness were significantly related to high values of NDI (i.e. heterogeneous neighbourhoods). Regression trees showed that total species richness was best predicted by the amount of roadside habitat in the neighbourhood and NDI. Forest species richness was positively related to NDI and negatively related to the amount of coniferous stands in the neighbourhood.  相似文献   

3.
Aim We tested whether the distribution and cover of alien plant species in Europe was related to human disturbance and microclimate. Location Surveys were conducted at 13 sites across Europe, each containing a pair of landscapes with different land‐use intensities. Methods Sampling locations were chosen based on land use and microclimate at two scales: land use was characterized at the patch and landscape scale; climate was expressed as regional and local temperature. The slope of each sample location was derived from a digital elevation model. Cover of plant species was measured using point counts and analysed using mixed effect models. Species were classified as native, archaeophytes and neophytes (pre‐ versus post‐ad 1500 immigrants). Due to the zero inflation observed in the alien groups, their cover was analysed conditional on their presence. Results Anthropogenic disturbance was a significant explanatory variable, increasing the presence and cover of alien species and decreasing the cover of native species. Alien presence was increased in sites under agricultural management, while their cover responded to land use at both local and landscape scales (and to their interaction), such that only natural habitats in semi‐natural landscapes had low alien cover. Microclimate was important for neophytes, with presence concentrated around mesic conditions. Slope was relevant for archaeophytes and native species, suppressing the former group and promoting the latter one. Main conclusions We found that, at the European scale, the distribution of alien plants is related to anthropogenic disturbance more than to microclimatic differences. The presence of neophytes, however, was influenced by climate at local and regional scales, with the highest incidence under mesic conditions. The different patterns observed for the presence and cover of alien species suggest different mechanisms acting during their establishment and spread. They also suggest that to counteract the expansion of alien species natural habitats may need to be maintained at landscape scales.  相似文献   

4.
黄小荣 《植物研究》2020,40(3):339-346
了解森林环境中多种外来植物对多种环境因子的互作效应,可以更有针对性地应对外来入侵威胁。在南宁老虎岭林区分6个区进行样方调查,以样方所有外来植物的相对百分比作为外来植物入侵程度,利用以分区为随机截距的混合效应模型和一般线性模型来分析有关因素对入侵的影响,用R-effects包的互作效应图形化和数据提取来解释互作效应的复杂变化。多因素混合效应模型分析表明,路边对入侵的主效应为正且极显著(P=0.000),林冠郁蔽度和优势最大株高对入侵的主效应为负(P=0.000),土著物种丰富度对入侵的主效应不显著,但土著物种丰富度与路边的互作对入侵的效应极显著(P=0.007);路边的土著物种丰富度明显提升入侵抵抗性,但林内的土著物种丰富度只能微弱增加入侵抵抗性;林冠郁蔽度和优势最大株高的互作对入侵的效应极显著(P=0.004),但两个因素对入侵的限制作用非可加。一般线性模型分析表明,林龄和抚育时间对外来植物入侵的影响趋势不明显;未发现引进树种造林与乡土树种造林的林下外来植物入侵程度有差异;相对于林道的样方位置高低影响入侵程度,林道下方的样方较易被入侵。在监测或防控林业外来植物时,重点应放在低于林道的森林。  相似文献   

5.
Recent studies highlight the importance of selecting the appropriate scale and indices of invasion level for evaluating the abundance and impact of alien plants. Our survey considers the use of vegetation plot databases compared with floristic checklists to address invasion patterns regarding alien–native relationships across vegetation types by means of a multi-scale approach. We analysed the alien–native richness relationship in 1077 vegetation plots from the Basque Country (N. Spain) at ecosystem level and phytosociological class and alliance levels. According to our results, the alien species richness (Alo)–native species richness (Nat) relationship is variable and depends not only on the scale but also on the vegetation type. In contrast with other multi-scale approaches, no negative correlation has been detected at any studied level. The strong correlation existing between plot number and cumulative Alo and cumulative Nat highlights the constraints of using checklists to generalize invasion patterns. Our results demonstrate that the combined use of both relative alien species richness and relative alien species cover facilitates the understanding of invasion patterns across plant communities at different scales. In addition to climate, disturbance and propagule pressure, habitat type proved to be an important filter for alien species, capable of explaining such patterns.  相似文献   

6.
Abstract. I examined a data set of 77 protected areas in the USA (including national and state parks) to determine which of the following variables most strongly influence alien plant species richness: park area, climate (temperature and precipitation), native species richness, visitation rate, local human population size, total road length, park shape and duration of European settlement. Many of these predictor variables are intercorrelated, so I used multiple regression to help separate their effects. In support of previous studies, native species richness was the best single predictor of alien species richness, probably because it was a good estimator of both park area and habitat diversity available for establishment of alien species. Other significant predictors of alien species richness were years of occupation of the area by European settlers and the human population size of adjacent counties. Climate, visitation rate, road length and park shape did not influence alien species richness. The proportion of alien species (alien richness/native richness) is inversely related to park area, in agreement with a previous study. By identifying which variables are most important in determining alien species richness, such findings suggest ways to reduce alien species establishment.  相似文献   

7.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

8.
Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.  相似文献   

9.
Natural habitats in human-altered landscapes are especially vulnerable to biological invasions, especially in their edges. We aim to understand the influence of landscape and local characteristics on biological invasions by exploring the level of plant invasion and alien species traits in forest edges in highly urbanized landscapes. We identified all plant species in 73 paired plots in the edge and 50 m towards the interior of the forest. We explored the association between alien species richness and similarity in species composition between edge and interior plots with landscape and local variables, using generalized linear models and variance partitioning techniques. Then, we performed Fourth-corner analyses to explore the association between alien plant traits and local and landscape variables. In contrast to native species richness, alien species richness was more affected by the surrounding landscape than by the local characteristics of the edge. Road proximity was positively associated with alien species richness and proportion and was its most important correlate, whereas disturbance was negatively associated with native species richness and was its most influential factor. Alien plant traits were also primarily associated with landscape characteristics. For instance, species of Mediterranean origin and introduced for agriculture were associated with higher agriculture use in the landscape. Our findings suggest that risk analyses of habitat vulnerability to invasion must consider the landscape context in order to successfully predict highly invaded areas and identify potentially successful invaders.  相似文献   

10.
Coastal sand dunes represent one of the most fragile ecosystems in the Mediterranean basin. These habitats naturally suffer the action of several limiting factors such as sand burial, marine aerosol and low soil fertility; on the other hand, they often host species of high conservation value. Over the last decades, they have also experienced a high level of biological invasion. In this study, we sampled psammophilous vegetation in two sites in the northern Adriatic coast belonging to the Natura 2000 network to describe diversity patterns and to identify the main ecological drivers of species diversity. Plant species richness and their abundance were assessed in each plot. Differences in species composition for native and alien species were compared via PERMANOVA analysis. Species complementarity was explored by partitioning beta diversity in its spatial components (richness and replacement). A Generalized Linear Model was also computed to assess the main environmental factors that may promote invasiveness in these ecosystems. For the investigated area, our results highlight the strong differentiation in community composition both in alien and native species: in particular alien species showed on average a lower complementarity among habitats compared to native species. Specifically, communities seem to be more diversified when larger spatial scales were considered. Beta diversity in both groups appears to be more dominated by the richness component with respect to the replacement component. Furthermore, in these habitats, the occurrence of alien species was shown to be related to geomorphological predictors more than climatic variables.  相似文献   

11.
Aim To investigate how local, regional and historical factors shape the herbaceous plant communities in fragmented riverine forests, and how the community composition and species richness of these fragments is related to the interplay between the environmental factors and specific plant life‐trait combinations. Location Riverine forest fragments in the Grand‐duché de Luxembourg. Methods Forest fragments were surveyed for their abundance in herbaceous plant species. All plant species where clustered into Emergent Groups (EG) by means of a formal classification based on 14 life‐history traits. Within each EG, the local, regional and historical factors were related to the community composition using partial Canonical Correspondence Analyses (pCCA) and to the species richness using Generalized Linear Models (GLMs). The EG colonization ability was characterized by means of logistic regressions. Results We defined and characterized seven EGs, among which three consisted of forest specialist species (barochorous perennials, short geophytes and zoochorous perennials), which exhibited specific life‐trait combinations: large and short‐lived seeds and/or vernal phenology. Differences in EG composition between forest fragments were mainly explained by local environmental factors such as soil productivity and pH. The richness of barochorous perennials and short geophytes was well predicted by the historical and regional factors. The colonization ability appeared very low for barochorous perennials and short geophytes. Main conclusions Local environmental conditions appear to drive the differentiation of the riverine forest plant communities owing to the specific habitat requirements of many forest species. Spatial and temporal forest discontinuities affect the richness of forest specialist species, due to dispersal and/or recruitment limitations. The emergent group approach enhances the understanding of the relative influence of local, regional and historical factors by distinguishing between forest specialists from generalists or ‘matrix’ species, which have a masking effect.  相似文献   

12.
Small isolated patches of native forest surrounded by extensive pastoral grasslands, characteristic of many New Zealand rural landscapes, represent an important reservoir of lowland biodiversity. Improved management of them is a major focus of biodiversity conservation initiatives in New Zealand. We quantified the long-term impacts of grazing on indigenous forest remnants in hill country at Whatawhata, western Waikato, North Island. Structure and composition were compared between forest fragments grazed for >50 years and nearby ungrazed continuous forest. Grazed fragments had shorter and less shady canopies, sparser understoreys, tree populations with larger mean diameters, and ground layers with lower cover of litter and higher cover of vegetation and bare soil than continuous forest. Fragments also had lower indigenous-plant species richness, especially in sapling and seedling populations, and almost no palatable indigenous shrubs, terrestrial orchids, and ferns that require high humidity (e.g. Hymenophyllum spp.), but contained many indigenous and adventive herbaceous species. A transition appears to be occurring in grazed fragments from tall, long-lived trees like Beilschmiedia tawa and Dysoxylum spectabile to short and shorter-lived trees like Kunzea ericoides, Melicytus ramiflorus, and Dicksonia squarrosa. Because grazing inhibits most regeneration processes, unfenced remnants of conifer–broadleaved forest are unlikely to be maintained in grazed pasture in the long term.  相似文献   

13.
Although the strong relationship between vegetation and climatic factors is widely accepted, other landscape composition and configuration characteristics could be significantly related with vegetation diversity patterns at different scales. Variation partitioning was conducted in order to analyse to what degree forest landscape structure, compared to other spatial and environmental factors, explained forest tree species richness in 278 UTM 10 × 10 km cells in the Mediterranean region of Catalonia (NE Spain). Tree species richness variation was decomposed through linear regression into three groups of explanatory variables: forest landscape (composition and configuration), environmental (topography and climate) and spatial variables. Additionally, the forest landscape characteristics which significantly contributed to explain richness variation were identified through a multiple regression model. About 60% of tree species richness variation was explained by the whole set of variables, while their joint effects explained nearly 28%. Forest landscape variables were those with a greater pure explanatory power for tree species richness (about 15% of total variation), much larger than the pure effect of environmental or spatial variables (about 2% each). Forest canopy cover, forest area and land cover diversity were the most significant composition variables in the regression model. Landscape configuration metrics had a minor effect on forest tree species richness, with the exception of some shape complexity indices, as indicators of land use intensity and edge effects. Our results highlight the importance of considering the forest landscape structure in order to understand the distribution of vegetation diversity in strongly human-modified regions like the Mediterranean.  相似文献   

14.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

15.
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at ‘local’ and ‘landscape’ scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the ‘ancient forest species’), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.  相似文献   

16.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

17.
The German Federal State of Saxony aims to increase forest cover, supported by the implementation of afforestation programs. To analyze consequences of an increase in forest cover, this study investigates possible trade-offs between carbon storage and plant biodiversity caused by afforestation. Six afforestation scenarios with total forest cover ranging from 27.7% to 46% were generated in the Mulde river basin in Saxony with regard to different forest types. Carbon storage was calculated by the process-based Dynamic Vegetation Model LPJ-GUESS while random forest models were used to predict changes in plant species richness. We used eight different plant groups as responses: total number of plant species, endangered species, as well as species grouped by native status (three groups) and pollination traits (three groups). Afforestation led to an increase in carbon storage that was slightly stronger in coniferous forests as compared to deciduous forests. The relationship between plant species richness and afforestation was context dependent. Species richness showed a non-linear relationship with forest cover share. The relationship was influenced by shares of land use types, climatic conditions and land use configuration expressed by the number of land use patches. The effect of forest type on plant species richness was marginal. On average the relationship between carbon storage and plant species richness was synergistic for most plant groups. However, the relationship between change in species richness and change in carbon storage varied across space. This changing relationship was used to identify priority areas for afforestation. The different plant groups responded differently to an increase in forest cover. The change in species richness for Red List species was relatively distinct from the other species groups. Neophytes and archeophytes (i.e. alien plant species introduced after and before the discovery of the Americas) showed a similar response to the afforestation scenarios. While afforestation had overall positive effects both on plant species richness and carbon storage, a number of locations were identified for which afforestation would lead to a decrease in plant species richness. Spatial planning should therefore avoid afforestation at these locations.  相似文献   

18.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

19.
The effect of tree species composition, stand structure characteristics and substrate availability on ground-floor bryophyte assemblages was studied in mixed deciduous forests of Western Hungary. Species composition, species richness and cover of bryophytes occurring on the soil and logs were analysed as dependent variables. The whole assemblage and functional groups defined on the basis of substrate preference were investigated separately. Substrate availability (open soil, logs) was the most prominent factor in determining species composition, cover and diversity positively, while the litter of deciduous trees had a negative effect on the occurrence of forest floor bryophytes. Besides, bryophyte species richness increased with tree species and stand structural diversity, and for specialist epiphytic and epixylic species log volume was essential. Sapling density and light heterogeneity were influential on bryophyte cover, especially for the dominant terricolous species. Many variables of the forest floor bryophyte community can be estimated efficiently by examining stand structure in the studied region. Selective cutting increasing tree species diversity, stand structural heterogeneity and dead wood volume can maintain higher bryophyte diversity in this region than the shelter-wood system producing even-aged, monodominant, structurally homogenous stands.  相似文献   

20.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号