首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.  相似文献   

2.
Exchange protein directly activated by cAMP (EPAC) is a mediator of a cAMP signaling pathway that is independent of protein kinase A. EPAC has two isoforms (EPAC1 and EPAC2) and is a cAMP-dependent guanine nucleotide exchange factor for the small GTPases, Rap1 and Rap2. Recent studies suggest that EPAC1 has both positive and negative influences on cancer and is involved in cell proliferation, apoptosis, migration and metastasis. We report that EPAC1 and EPAC2 expression levels were significantly lower in bladder cancer tissue than in normal bladder tissue. In addition, bladder cancer cell lines showed reduced EPAC1 mRNA expression. Furthermore, EPAC1 overexpression in bladder cancer cell lines induced morphologic changes and markedly suppressed cell migration without affecting cell viability. The overexpressed EPAC1 preferentially localized at cell-cell interfaces. In conclusion, reduced EPAC1 expression in bladder tumors and poor migration of EPAC1-overexpressing cells implicate EPAC1 as an inhibitor of bladder cancer cell migration.  相似文献   

3.
4.
We have examined the regulation of p21(cip1) by soluble mitogens and cell anchorage as well as the relationship between the expression of p21(cip1) and activation of the ERK subfamily of MAP kinases. We find that p21(cip1) expression in G1 phase can be divided into two discrete phases: an initial induction that requires growth factors and the activation of ERK, and then a subsequent decline that is enhanced by cell anchorage in an ERK-independent manner. In contrast to the induction of cyclin D1, the induction of p21(cip1) is mediated by transient ERK activity. Comparative studies with wild-type and p21(cip1)-null fibroblasts indicate that adhesion-dependent regulation of p21(cip1) is important for proper control of cyclin E-cdk2 activity. These data lead to a model in which mitogens and anchorage act in a parallel fashion to regulate G1 phase expression of p21(cip1). They also show that (a) growth factors and growth factor/extracellular matrix cooperation can have different roles in regulating G1 phase ERK activity and (b) both transient and sustained ERK signals have functionally significant roles in controlling cell cycle progression through G1 phase.  相似文献   

5.
Glycerophospholipids are important components of cellular membranes, required for constructing structural barriers, and for providing precursors of bioactive lipid mediators. Lysophosphatidic acid acyltransferases (LPAATs) are enzymes known to function in the de novo glycerophospholipid biosynthetic pathway (Kennedy pathway), using lysophosphatidic acid (LPA) and acyl-CoA to form phosphatidic acid (PA). Until now, three LPAATs (LPAAT1, 2, and 3) have been reported from the 1-acyl-glycerol-3-phosphate O-acyltransferase (AGPAT) family. In this study, we identified a fourth LPAAT enzyme, LPAAT4, previously known as an uncharacterized enzyme AGPAT4 (LPAATδ), from the AGPAT family. Although LPAAT4 was known to contain AGPAT motifs essential for acyltransferase activities, detailed biochemical properties were unknown. Here, we found that mouse LPAAT4 (mLPAAT4) possesses LPAAT activity with high acyl-CoA specificity for polyunsaturated fatty acyl-CoA, especially docosahexaenoyl-CoA (22:6-CoA, DHA-CoA). mLPAAT4 was distributed in many tissues, with relatively high expression in the brain, rich in docosahexaenoic acid (DHA, 22:6). mLPAAT4 siRNA in a neuronal cell line, Neuro 2A, caused a decrease in LPAAT activity with 22:6-CoA, suggesting that mLPAAT4 functions endogenously. siRNA in Neuro 2A cells caused a decrease in 18:0–22:6 PC, whereas mLPAAT4 overexpression in Chinese hamster ovary (CHO)-K1 cells caused an increase in this species. Although DHA is considered to have many important functions for the brain, the mechanism of its incorporation into glycerophospholipids is unknown. LPAAT4 might have a significant role for maintaining DHA in neural membranes. Identification of LPAAT4 will possibly contribute to understanding the regulation and the biological roles of DHA-containing glycerophospholipids in the brain.  相似文献   

6.
All-trans retinoic acid (RA) levels are controlled by enzymes of the vitamin A metabolism (RDH16, RalDH2, and LRAT) and RA catabolism (CYP26 and CYP2S1). Here, the mRNA expression of these enzymes was investigated in human keratinocytes at different Ca2+concentrations and after exposure to RA and CYP26 inhibitors. Cellular differentiation (high Ca2+) increased the expression of LRAT, RDH16 and RalDH2, and decreased CYP26B1. RA (1 μM) induced CYP26A1, CYP26B1, CYP2S1, CRABPII and LRAT mRNA. The CYP26 inhibitor talarozole altered CYP26A1 and LRAT mRNA expression in a similar way as RA, increased the cellular accumulation of [3H]RA, and induced a punctate CRABPII staining, also observed after siRNA knock-down of CYP26B1 (but not after RA exposure). Furthermore, CYP26B1 siRNA increased the accumulation of [3H]RA and the CRABPII mRNA, suggesting an augmented retinoid signalling. Thus CYP26B1 appears essential for RA catabolism under physiological conditions, whereas CYP26A1 might play a greater role during RA excess.  相似文献   

7.
Phosphotyrosine interaction domain containing 1 (PID1) is an important mediator in the development of obesity-related insulin resistance in humans and animals. For a better understanding of the structure and function of the PID1 gene and to study its effect in caprine, the cDNA of the PID1 gene from the abdominal muscle of Tianfu goat was cloned and sequenced. The structure of PID1 was analyzed using bioinformatics tools. The results showed that the full sequence of the caprine PID1 cDNA was 896 bp long and contained a 654 bp long coding region that encoded a 217 amino acid sequence. Fifteen phosphorylation sites were predicted in the translated PID1 protein. The protein had a phosphotyrosine-binding domain between Arg53 and Ile199. A phylogenic tree based on the PID1 proteins from other species revealed that the caprine protein was closely related to cattle PID1. Fluorescence quantitative PCR analyses revealed that PID1 was expressed in the heart, liver, spleen, lung, kidney, leg muscle, abdominal muscle and longissimus dorsi muscle of goats. In particular, high expression levels of PID1 were detected in liver and abdominal muscle, and low expression levels were seen in lung. Furthermore, the PID1 mRNA expression levels in the longissimus dorsi muscles increased gradually with the age of the goats (P < 0.05). Western blotting results detected the PID1 protein in six of the tissues in which PID1 was shown to be expressed; the two exceptions were liver and spleen.  相似文献   

8.
Ginsenoside Rg1, a steroidal saponin of high abundance in ginseng, possesses the neuroprotective effects. In this study, we tried to explore the effect of Rg1 on promoting differentiation of mouse embryonic stem (ES) cells towards the neuronal lineage and its potential role involved in glucocorticoid receptor (GR) activation. Rg1 treatment induced a remarkable increase in the population of neuron-like cells in a time-dependent manner. More than 80% of Rg1-treated embryoid bodies (EBs) differentiated into neuron-like cells on d 8 + 10. Furthermore, the gradually increased protein expression of neurofilament (NEFM) and β-tubulin III (a neuronal specific protein) was determined. GR expression gradually increased during the differentiation course. RU486, an antagonist of GR, could efficiently block the neurogenesis-promoting activity of Rg1. On the other side, Rg1 stimulated the phosphorylation of ERK1/2 and Akt at different time points through GR activation-dependent mechanisms. Treatment of both U0126 (an inhibitor of MEK) and LY294002 (an inhibitor of PI3 K), hampered the neuronal differentiation induced by Rg1. Meantime, U0126 further decreased Rg1-induced p-Akt expression. In conclusion, Rg1 possesses the effects on inducing differentiation of mouse ES cells into neurons in vitro via the GR-MEK-ERK1/2-PI3 K-Akt signaling pathway.  相似文献   

9.
10.
11.
We demonstrate enhanced differentiation of oligodendrocytes during neurogenesis of human embryonic stem cells (hESCs) using an extracellular matrix protein, vitronectin (VN). We show that VN is expressed in the ventral part of the developing human spinal cord. Combined treatment of retinoic acid, sonic hedgehog, and noggin in the presence of VN allows hESCs to differentiate into O4-positive oligodendrocytes. Particularly, VN profoundly promotes the derivation of oligodendrocyte progenitors that proliferate and differentiate into oligodendrocytes in response to mitogenic and survival factors. These results support the beneficial effect of VN on oligodendrocytic differentiation of hESCs.  相似文献   

12.
The functional role of the cyclin-dependent kinase inhibitor (CDKI) p21CIP1 in differentiation of human myelomonocytic leukemia cells (U937) exposed to low concentrations of the antimetabolite 1-beta-D-arabino-furanosylcytosine (ara-C) was examined utilizing a cell line stably expressing a p21CIP1 antisense construct. Continuous exposure to 50 nM ara-C led to marked induction of p21CIP1 at 48-72 h in empty-vector control cells but not in their antisense-expressing counterparts (p21AS/F4 and B8). Such treatment induced expression of the myelomonocytic differentiation marker CD11b in approximately 35% of control cells, but no evidence of maturation was noted in antisense-expressing lines. However, antisense-expressing cells exposed to low concentrations of ara-C exhibited a reciprocal increase in apoptosis, manifested by the appearance of cells with classic morphologic features and hypodiploid quantities of DNA, reduced mitochondrial membrane potential (deltapsim), an increase in cytochrome c release into the cytosol, cleavage/activation of procaspases-9 and -3, and degradation of PARP and p27Kip1. Whereas empty-vector control cells exposed to 50 nM ara-C exhibited a decline in Bcl-2 expression, dephosphorylation of pRb, and an initial accumulation in S-phase, antisense-expressing cells did not. However, c-Myc down-regulation induced by low concentrations of ara-C was, if anything, more complete in antisense-expressing cells. Exposure of control but not antisense-expressing cells to ara-C led to phosphorylation/activation of MAP kinase at 24 h; moreover, the specific MEK/MAP kinase inhibitor PD98059 enhanced low-dose ara-C-mediated apoptosis only in wild-type cells. Lastly, exposure to 50 nM ara-C for 72 h resulted in detectable levels of cytoplasmic p21CIP1, a phenomenon associated with resistance to apoptosis, only in empty vector controls. Collectively, these findings demonstrate a functional role for p21CIP1 in leukemic cell maturation induced by low concentrations of ara-C. They also indicate that, as in the case of more conventional differentiation-inducers such as phorbol esters, disruption of the p21CIP1 response after exposure to low concentrations of the cytotoxic drug ara-C prevents leukemic cells from engaging a maturation program, but instead directs them along an apoptotic pathway.  相似文献   

13.
The environmental pollutant 6-nitrochrysene (6-NC) is a potent mammary carcinogen in rats; it is more potent than numerous classical mammary carcinogens such as benzo[a]pyrene (BaP). The mechanisms that account for the remarkable carcinogenicity of 6-NC remain elusive. Similar to BaP, 6-NC is also known to induce DNA damage in rodents and in human breast tissues. As an initial investigation, we reasoned that DNA damage induced by 6-NC may alter the expression of p53 protein in a manner that differs from other DNA damaging carcinogens (e.g. BaP). Using human breast adenocarcinoma MCF-7 cells and immortalized human mammary epithelial MCF-10A cells, we determined the effects of 6-NC on the expression of p53 protein and its direct downstream target cyclin-dependent kinase inhibitor p21(Cip1) as well as on the cell cycle progression. Western blot analysis demonstrated that treatments of MCF-7 and MCF-10A cells with 6-NC for 12, 24 or 48h did not increase the level of total p53 protein; however, an increase of p21(Cip1) protein and a commitment increase of G(1) phase were observed in MCF-10A cells but not in MCF-7 cells. Further studies using 1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C), the putative ultimate genotoxic metabolite of 6-NC, was conducted and showed a significant induction of p53 (p<0.05) in MCF-7 cells; however, this effect was not evident in MCF-10A cells, indicating the varied DNA damage responses between the two cell lines. By contrast to numerous DNA damaging agents such as BaP which is known to stimulate p53 expression, the lack of p53 response by 6-NC imply the lack of protective functions mediated by p53 (e.g. DNA repair machinery) after exposure to 6-NC and this may, in part, account for its remarkable carcinogenicity in the mammary tissue.  相似文献   

14.
Treatment of IMR-90 human diploid fibroblasts with a sublethal concentration of H(2)O(2) induces premature senescence. We investigated the protein abundance, subcellular localization and involvement of caveolin 1 in premature senescence. Caveolin 1 is a scaffolding protein able to concentrate and organize signaling molecules within the caveolae membrane domains. We report the first evidence of increased nuclear and cytoplasmic localization of caveolin 1 during establishment of H(2)O(2)-induced premature senescence. Moreover, we demonstrate that phosphorylation of caveolin 1 during treatment with H(2)O(2) is dependent on p38alpha mitogen-activated protein kinase.  相似文献   

15.
Factor for adipocyte differentiation 104 (fad104) is a regulator of adipogenesis and osteogenesis. Our previous study showed that fad104-deficient mice died immediately after birth, suggesting fad104 to be essential for neonatal survival. However, the cause of this rapid death is unclear. Here, we demonstrate the role of fad104 in neonatal survival. Phenotypic and morphological analyses showed that fad104-deficient mice died due to cyanosis-associated lung dysplasia including atelectasis. Furthermore, immunohistochemistry revealed that FAD104 was strongly expressed in ATII cells in the developing lung. Most importantly, the ATII cells in lungs were immature, and impaired the expression of surfactant-associated proteins. Collectively, these results indicate that fad104 has an indispensable role in lung maturation, especially the maturation and differentiation of ATII cells.  相似文献   

16.
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called “peroxins,” which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the αL conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.  相似文献   

17.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

18.
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.  相似文献   

19.
Expression of nephrin, a crucial component of the glomerular slit diaphragm, is downregulated in patients with proteinuric glomerular diseases. Using conditionally immortalized reporter podocytes, we found that bystander macrophages as well as macrophage-derived cytokines IL-1beta and TNF-alpha markedly suppressed activity of the nephrin gene promoter in podocytes. The cytokine-initiated repression was reversible, observed on both basal and inducible expression, independent of Wilms' tumor suppressor WT1, and caused in part via activation of the phosphatidylinositol-3-kinase/Akt pathway. These results indicated a novel mechanism by which activated macrophages participate in the induction of proteinuria in glomerular diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号