首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

2.
Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M−1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Hongjuan Xi 《FEBS letters》2009,583(13):2269-15405
Poly(A) is a relevant sequence in cell biology due to its importance in mRNA stability and translation initiation. Neomycin is an aminoglycoside antibiotic that is well known for its ability to target various nucleic acid structures. Here it is reported that neomycin is capable of binding tightly to a single-stranded oligonucleotide (A30) with a Kd in the micromolar range. CD melting experiments support complex formation and indicate a melting temperature of 47 °C. The poly(A) duplex, which melts at 44 °C (pH 5.5), was observed to melt at 61 °C in the presence of neomycin, suggesting a strong stabilization of the duplex by the neomycin.  相似文献   

4.
Kim KS  Lee JJ  Shin HY  Choi BH  Lee CK  Kim JJ  Cho BW  Kim TH 《Animal genetics》2006,37(4):419-421
The aim of this study was to analyse the combined effect of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMGA1) polymorphisms on growth and fatness traits in Duroc pigs. No significant interaction was observed between MC4R and HMGA1 for back-fat traits. An additive mode of inheritance of both gene effects was found for average daily gain and lean meat content. Maximum mean differences from combined genotypic effects were over 2 mm for back fat, 70 g/day for average daily gain and 2% for lean meat content. Therefore, utilization of polymorphisms in both MC4R and HMGA1 for marker-assisted selection could result in an economic benefit to the pig industry.  相似文献   

5.
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.  相似文献   

6.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

7.
Human EFHC1 is a member of the EF-hand superfamily of Ca2+-binding proteins with three DM10 domains of unclear function. Point mutations in the EFHC1 gene are related to juvenile myoclonic epilepsy, a fairly common idiopathic generalized epilepsy. Here, we report the first structural and thermodynamic analyses of the EFHC1C-terminus (residues 403-640; named EFHC1C), comprising the last DM10 domain and the EF-hand motif. Circular dichroism spectroscopy revealed that the secondary structure of EFHC1C is composed by 34% of α-helices and 17% of β-strands. Size exclusion chromatography and mass spectrometry showed that under oxidizing condition EFHC1C dimerizes through the formation of disulfide bond. Tandem mass spectrometry (MS/MS) analysis of peptides generated by trypsin digestion suggests that the Cys575 is involved in intermolecular S-S bond. In addition, DTNB assay showed that each reduced EFHC1C molecule has one accessible free thiol. Isothermal titration calorimetry (ITC) showed that while the interaction between Ca2+ and EFHC1C is enthalpically driven (ΔH = −58.6 to −67 kJ/mol and TΔS = −22.5 to −31 kJ/mol) the interaction between Mg2+ and EFHC1C involves an entropic gain, and is ∼5 times less enthalpically favorable (ΔH = −11.7 to −14 kJ/mol and TΔS = 21.9 to 19 kJ/mol) than for Ca2+ binding. It was also found that under reducing condition Ca2+ or Mg2+ ions bind to EFHC1C in a 1/1 molar ratio, while under oxidizing condition this ratio is reduced, showing that EFHC1C dimerization blocks Ca2+ and Mg2+ binding.  相似文献   

8.
We extracted phosphorus atom coordinates from the database of DNA crystal structures and calculated geometrical parameters needed to reproduce the crystal structures in the phosphorus atom representation. Using the geometrical parameters we wrote a piece of software assigning the phosphorus atom coordinates to the DNA of any nucleotide sequence. The software demonstrates non-negligible influence of the primary structure on DNA helicity, which may stand behind the heteromonous double helices of poly(dA).poly(dT) and poly(dG).poly(dC). In addition, the software is so simple that it makes possible to simulate the "crystal" structures of not only viral DNAs, but also the whole genome of Saccharomyces cerevisiae as well as the DNA human chromosome 22 having dozens of megabases in length.  相似文献   

9.
Interleukin-2 is a key immuno-regulatory cytokine whose actions are mediated by three different cell surface receptors: the alpha, beta and the "common gamma" (gamma(c)) chains. We have undertaken a complete thermodynamic characterization of the stepwise assembly cycle for multiple possible combinations of the receptor-ligand, and receptor-receptor interactions that are necessary for formation of the high-affinity IL-2/alphabetagamma(c) signaling complex. We find an entropically favorable high affinity interaction between IL-2 and its alpha receptor, a moderately entropically favorable low affinity interaction between IL-2 and its beta receptor, and no interaction between IL-2 and the shared receptor, gamma(c). Formation of the stable intermediate trimolecular complexes of IL-2 with alpha and beta receptors, as well as IL-2 with beta and gamma(c) receptors proceeds through enthalpy-entropy compensation mechanisms. Surprisingly, we see a moderate affinity interaction between the unliganded receptor alpha and beta chains, suggesting that a preformed alphabeta complex may serve as the initial interaction complex for IL-2. Reconstitution of the IL-2/Ralphabetagamma(c) high-affinity quaternary signaling complex shows it to be assembled through cooperative energetics to form a 1:1:1:1 assembly. Collectively, the favorable entropy of the bimolecular interactions appears to be offset by the loss in rigid body entropy of the receptor components in the higher-order complexes, but overcome by the formation of increasingly enthalpically favorable composite interfaces. This enthalpic mechanism utilized by gamma(c) contrasts with the favorable entropic mechanism utilized by gp130 for degenerate cytokine interaction. In conclusion, we find that several energetically redundant pathways exist for formation of IL-2 receptor signaling complexes, suggesting a more complex equilibrium on the cell surface than has been previously appreciated.  相似文献   

10.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   

11.
S Roy  B Borah  G Zon  J S Cohen 《Biopolymers》1987,26(4):525-536
Conformational analysis from the pattern and intensities of cross-peaks in the two-dimensional nuclear Overhauser effect proton nmr spectra of the homopolymer, poly(dA) · poly(dT), and the analogous oligomer, d(AAAAAATTTTTT)2, indicate that they both exist in the B-conformation. The conformation of the ApT/TpA junction in the oligomer is significantly different from the rest of the base pairs.  相似文献   

12.
The nonintercalative binding of DAPI to the minor groove of double-stranded (dA-dT)11 and (dA)11·(dT)11 oligomers held in the B—DNA conformation is investigated by performing theoretical computations of related intermolecular interaction energies. For both oligomers, the intrinsically preferred binding configuration is stabilized by hydrogen bonding interactions involving side A of DAPI and O2 and N3 atoms belonging to the (5′ 3′) strand of (dA-dT)11 or O2 of the thyminie strand of (dA)11·(dT)11. Additional interactons involve hydrogen atoms of side B of DAPI and O1′, deoxyribose oxygens of the opposite strand.  相似文献   

13.
The energetics of LRP binding to a 104 bp lac promoter determined from ITC measurements were compared to the energetics of binding to a shorter 40 bp DNA duplex with the 21 bp promoter binding site sequence. The promoter binding affinity of 2.47 +/- 0.0 1x 10(7) M(-1) was higher than the DNA binding affinity of 1.81 +/- 0.67 x 10(7) M(-1) while the binding enthalpy of -804 +/- 41 kJ mol(-1) was lower than that of the DNA binding enthalpy of -145 +/- 16 kJ mol(-1) at 298.15 K. Both the promoter and DNA binding reactions were exothermic in phosphate buffer but endothermic in Tris buffer that showed the transfer of four protons to LRP in the former reaction but only two in the latter. A more complicated dependence of these parameters on temperature was observed for promoter binding. These energetic differences are attributable to additional LRP-promoter interactions from wrapping of the promoter around the LRP.  相似文献   

14.
The essential role of human dual oxidase 2 (hDUOX2) in thyroid hormone biosynthesis defines this member of the NOX/DUOX family, whose absence due to mutation has been directly related to disease, specifically hypothyroidism. Both human DUOX isoforms, hDUOX1 and hDUOX2, are expressed in thyroid tissue; however, hDUOX1 cannot compensate for inactivation of hDUOX2, suggesting that each enzyme is differentially regulated and/or functions in a unique manner. In efforts to uncover relevant structural and functional differences we have expressed and purified the peroxidase domain of hDUOX21–599 for direct comparison with the previously studied hDUOX11–593. As was shown for hDUOX1, the truncated hDUOX2 domain purifies without a bound heme co-factor and displays no peroxidase activity. However, hDUOX21–599 displays greater stability than hDUOX11–593. Surprisingly, upon titration with heme, both isoforms bind heme with a low micromolar affinity, demonstrating that they retain a heme binding site. A conformational difference in the full-length protein and/or a protein–protein interaction may be required to increase the heme binding affinity.  相似文献   

15.
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics exert their antimicrobial activities by targeting the decoding region A site of the rRNA and inhibiting protein synthesis. A prokaryotic specificity of action is critical to therapeutic utility of 2-DOS aminoglycosides as antibiotics. Here, isothermal titration calorimetry (ITC) and fluorescence studies are presented that provide insight into the molecular basis for this prokaryotic specificity of action. Specifically, the rRNA binding properties of the 2-DOS aminoglycosides paromomycin and G418 (geneticin) are compared, using both human and Escherichia coli rRNA A site model oligonucleotides as drug targets. Paromomycin and G418 differ with respect to their specificities of action, with only paromomycin exhibiting a specificity for prokaryotic versus human ribosomes. G418 binds to both the human and E. coli rRNA A sites with a markedly lower affinity than paromomycin, with the affinities of both drugs for the human rRNA A site being lower than those they exhibit for the E. coli rRNA A site. Paromomycin induces the destacking of the base at position 1492 (by E. coli numbering) upon binding to the E. coli rRNA A site, but not the human rRNA A site. By contrast, the binding of G418 induces the destacking of base 1492 when either rRNA A site serves as the drug target. In the aggregate, these results suggest that binding-induced base destacking at the rRNA A site is a critical factor in determining the prokaryotic specificity of aminoglycoside action, with binding affinity for the A site being of secondary importance.  相似文献   

16.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

17.
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the β-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.  相似文献   

18.
19.
Microheterogeneity within the high mobility group (HMG)-1 and HMG-2 groups of nonhistone chromatin proteins has been investigated using reverse-phase high-performance liquid chromatography (RP-HPLC) under conditions (acetonitrile elution with 0.1% trifluoroacetic acid (TFA) as the counter ion) which separate proteins primarily on the basis of differences in their overall hydrophobicity. RP-HPLC proved to be a fast and efficient means for separating multiple subspecies of both the HMG-1 and HMG-2 proteins from both crude nuclear extracts and from ion-exchange column "purified" protein samples obtained from different types of mammalian cell nuclei. In crude nuclear extracts at least eight different HMG-2 protein species (two major and six minor), but only one major HMG-1 species, could be resolved by RP-HPLC. Three of the minor HMG-2 protein species could be isolated in "pure" form from crude extracts in one RP-HPLC step whereas under the same conditions the two major HMG-2 peaks (as well as the other minor species) were contaminated with either HMG-1 or HMG-3 (a degradation product of HMG-1). In crude extracts the major HMG-1 fraction always seems to be contaminated with one of the HMG-2 subfractions. RP-HPLC analysis of apparently "pure" protein preparations isolated by ion-exchange chromatography techniques revealed that "pure" HMG-1 can be resolved into at least three different protein species and "pure" HMG-2 into at least four different species. Amino acid analyses of different resolvable forms of the HMG proteins were not inconsistent with the suggestion that at least some of these may be primary sequence variants of the individual proteins, but other possibilities also exist.  相似文献   

20.
Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0–2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (Kd = 0.6 μM) to the Src SH2 domain when compared with Ac-pYEEI (Kd = 1.7 μM), an optimal Src SH2 domain ligand, and peptides 24 (Kd = 2.9–52.7 μM). The binding affinity of peptide 1 to the SH2 domain was reduced by more than 2-fold (Kd = 1.6 μM) upon addition of Ni2+ (300 μM), possibly due to modest structural effect of Ni2+ on the protein as shown by circular dichroism experimental results. The binding affinity of 1 was restored in the presence of EDTA (300 μM) (Kd = 0.79 μM). These studies suggest that peptides containing IDA groups may be used for designing novel SH2 domain binding ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号