首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP), the ribulose monophosphate (RuMP) pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium) produce ribose-5-phosphate via the nonoxidative PPP (NOPPP), whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1) lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP), the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P) among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii) probably does not synthesize aromatic amino acids at all.  相似文献   

3.
Among the various types of mutations studied in rhizobia, the auxotrophic mutations (which confer on the mutants the inability to synthesize certain essential substances such as amino acids, vitamins and nucleic acids), are the most favoured ones as these can be used as suitable markers for genetic analysis. An important property of rhizobia is their effectiveness i.e. their ability to fix atmospheric nitrogen into ammonia within the nodule. Special interest in this category of mutations by rhizobial geneticists is due to the fact that there is a strong correlation between the metabolic defects and the ineffectiveness (Nod- and/or Fix-) of the rhizobial strains. Auxotrophic mutants of various species of rhizobia with defects in the synthesis of nucleic bases, vitamins and amino acids have been obtained by mutagenising with physical, chemical and Tn5 mutagens. These mutants have been used in mapping studies as well as in establishing a correlation between its metabolic requirement and symbiotic relationship with the host plant. The present review deals with the isolation of auxotrophs, and their genetic, biochemical and symbiotic characterization. The review also encompasses the studies on the elucidation of biosynthetic pathways of nutritional substances in rhizobia.  相似文献   

4.
The nucleotide sequence of a Pseudomonas trans-zeatin producing gene (ptz) from the pCK1 plasmid of Pseudomonas syringae pv. savastanoi strain 1006 has been determined. This gene confers upon E. coli the ability to synthesize and secrete several cytokinins including trans-zeatin, iso-pentenyladenine and their respective N9-ribosyl derivatives. Sequence analysis indicates an open reading frame encoding a protein of 234 amino acids with a molecular weight of 26,816. Significant sequence homology is found between ptz and both the tzs and tmr genes from Agrobacterium tumefaciens. The results suggest a close relationship between the cytokinin biosynthetic pathways in P. savastanoi and A. tumefaciens.  相似文献   

5.
Mitochondria can synthesize a limited number of proteins encoded by mtDNA (mitochondrial DNA) by using their own biosynthetic machinery, whereas most of the proteins in mitochondria are imported from the cytosol. It could be hypothesized that the mitochondrial pool of amino acids follows the frequency of amino acids in mtDNA-encoded proteins or, alternatively, that the profile is the result of the participation of amino acids in pathways other than protein synthesis (e.g. haem biosynthesis and aminotransferase reactions). These hypotheses were tested by evaluating the pool of free amino acids and derivatives in highly-coupled purified liver mitochondria obtained from rats fed on a nutritionally adequate diet for growth. Our results indicated that the pool mainly reflects the amino acid composition of mtDNA-encoded proteins, suggesting that there is a post-translational control of protein synthesis. This conclusion was supported by the following findings: (i) correlation between the concentration of free amino acids in the matrix and the frequency of abundance of amino acids in mtDNA-encoded proteins; (ii) the similar ratios of essential-to-non-essential amino acids in mtDNA-encoded proteins and the mitochondrial pool of amino acids; and (iii), lack of a correlation between codon usage or tRNA levels and amino-acid concentrations. Quantitative information on the mammalian mitochondrial content of amino acids, such as that presented in the present study, along with functional studies, will help us to better understand the pathogenesis of mitochondrial diseases or the biochemical implications in mitochondrial metabolism.  相似文献   

6.
张博  戈惠明 《微生物学通报》2021,48(7):2407-2419
微生物天然产物是天然药物的重要组成部分,而天然产物的良好生物活性很大程度上取决于发挥药效的结构基团。这些特殊药效基团的生物合成,通常是利用小分子羧酸、氨基酸等结构简单的初级代谢产物,经过复杂的生物化学过程,最终合成结构复杂活性多样的天然产物。戊二酰亚胺类天然产物是一类重要的细菌来源天然产物,它们具有良好的生物活性,是潜在的先导化合物,部分化合物已被开发成分子探针。本文综述了近年来微生物来源的戊二酰亚胺类天然产物及其生物合成研究,包括Iso-Migrastatin、Lactimidomyin、Cycloheximide、Streptimidone、Gladiostatin、Sesbanimide等,对戊二酰亚胺类天然产物的生物合成研究,将有效促进通过基因组挖掘策略寻找新型戊二酰亚胺类天然产物。  相似文献   

7.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   

8.
9.
自然界存在着多种氨基酸,除用于蛋白质合成的20种外,大量用于合成具有生物活性的物质,广泛应用于食品、医药等多个领域.其中,非天然芳香族氨基酸L-苯甘氨酸作为一种重要的组成单元广泛的应用于盘尼西林、维吉霉素S、原始霉素Ⅰ等β-内酰胺类抗生素的生物合成当中.目前L苯甘氨酸主要通过化学法合成,但该方法合成收率低、污染大,且不...  相似文献   

10.
Threonine, lysine, methionine, and tryptophan are essential amino acids for humans and monogastric animals. Many of the commonly used diet formulations, particularly for pigs and poultry, contain limiting amounts of these amino acids. One approach for raising the level of essential amino acids is based on altering the regulation of their biosynthetic pathways in transgenic plants. Here we describe the first production of a transgenic forage plant, alfalfa (Medicago sativa L.) with modified regulation of the aspartate-family amino acid biosynthetic pathway. This was achieved by over-expressing the Escherichia coli feedback-insensitive aspartate kinase (AK) in transgenic plants. These plants showed enhanced levels of both free and protein-bound threonine. In many transgenic plants the rise in free threonine was accompanied by a significant reduction both in aspartate and in glutamate. Our data suggest that in alfalfa, AK might not be the only limiting factor for threonine biosynthesis, and that the free threonine pool in this plant limits its incorporation into plant proteins.  相似文献   

11.
Symbiotic nitrogen recycling enables animals to thrive on nitrogen-poor diets and environments. It traditionally refers to the utilization of animal waste nitrogen by symbiotic micro-organisms to synthesize essential amino acids (EAAs), which are translocated back to the animal host. We applied metabolic modelling and complementary metabolite profiling to investigate nitrogen recycling in the symbiosis between the pea aphid and the intracellular bacterium Buchnera, which synthesizes EAAs. The results differ from traditional notions of nitrogen recycling in two important respects. First, aphid waste ammonia is recycled predominantly by the host cell (bacteriocyte) and not Buchnera. Host cell recycling is mediated by shared biosynthetic pathways for four EAAs, in which aphid transaminases incorporate ammonia-derived nitrogen into carbon skeletons synthesized by Buchnera to generate EAAs. Second, the ammonia substrate for nitrogen recycling is derived from bacteriocyte metabolism, such that the symbiosis is not a sink for nitrogenous waste from other aphid organs. Host cell-mediated nitrogen recycling may be general among insect symbioses with shared EAA biosynthetic pathways generated by the loss of symbiont genes mediating terminal reactions in EAA synthesis.  相似文献   

12.

Background  

The coevolution theory of the origin of the genetic code suggests that the genetic code is an imprint of the biosynthetic relationships between amino acids. However, this theory does not seem to attribute a role to the biosynthetic relationships between the earliest amino acids that evolved along the pathways of energetic metabolism. As a result, the coevolution theory is unable to clearly define the very earliest phases of genetic code origin. In order to remove this difficulty, I here suggest an extension of the coevolution theory that attributes a crucial role to the first amino acids that evolved along these biosynthetic pathways and to their biosynthetic relationships, even when defined by the non-amino acid molecules that are their precursors.  相似文献   

13.
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock’s feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.  相似文献   

14.
3H and 14C tracing data concerning amino acid biosynthetic pathways in Escherichia coli K12 are presented. Thirteen acidic and neutral amino acids were isolated from protein hydrolysates of wild type E. coli K12 grown aerobically or anaerobically in the presence of [U-14C]glucose together with [1-3H]glucose, [3-3H]glucose, [4-3H]glucose, or [6-3H]glucose. The observed 3H/14C counts of the amino acids were compared with the ratios expected on the basis of the input substrate specific activities and present understanding of biosynthetic pathways. For nine amino acids, serine, valine, leucine, threonine, isoleucine, glycine, glutamate, proline, and phenylalanine, the agreement between anticipated and observed specific activities was satisfactory. For the remaining four, methionine, alanine, aspartate, and (in cells labeled with [3-3H]glucose) tyrosine, the anticipated and observed specific activities differed markedly. For alanine, aspartate, and tyrosine, the differences are probably due to exchange of tritium in the course of biosynthesis; for methionine, it may be that there is a principle source of the methyl group other than carbon 3 of serine.  相似文献   

15.
BIOSYNTHESIS IN ISOLATED ACETABULARIA CHLOROPLASTS : I. Protein Amino Acids   总被引:3,自引:0,他引:3  
The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.  相似文献   

16.
The quality of dietary protein is an important factor influencing the growth performance of fish. To evaluate the quality of protein, the variables commonly studied are the composition of the essential amino acids, the digestibility and the protein use efficiency. The goal of the present experiment was to test the effect of the dietary non-essential amino acid composition on the growth of Nile tilapia (Oreochromis niloticus). The fish were fed three purified diets differing only in their non-essential amino acid composition. The influence of the experimental diets on the growth performance, on the activity of enzymes involved in the amino acid metabolism, aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT), and on whole body delta(15)N values was investigated. Body mass, lipid, protein and energy gain differed significantly between the feeding groups. The activity of ASAT in the whole liver was significantly higher in fish with a positive protein balance compared to fish which lost protein. Whole body delta(15)N values of fish were negatively correlated with their body mass gain. Despite the poor utilisation of synthetic amino acids, the experiment indicates the importance of the dietary non-essential amino acid composition for the growth performance of fish. The study reveals the possibility to trace the utilisation of synthetic amino acids by determining the isotopic composition of dietary amino acids and tissues or whole bodies of animals.  相似文献   

17.
13C-NMR study of acetate assimilation in Thermoproteus neutrophilus   总被引:1,自引:0,他引:1  
Acetate assimilation into amino acids and the functioning of central biosynthetic pathways in the extremely thermophilic anaerobic archaebacterium Thermoproteus neutrophilus was investigated using 13C NMR as the method for determination of the labelling patterns. Acetate was assimilated via reductive carboxylation of acetyl-CoA to pyruvate and pyruvate conversion to phosphoenolpyruvate which was further carboxylated to oxaloacetate. 2-Oxoglutarate was mainly formed via citrate. However, the labelling patterns of glutamic acid and alanine were in agreement with the concurrent synthesis of about 15% 2-oxoglutarate and 5% pyruvate through the reductive citric acid cycle. A scrambling phenomenon occurring in aspartate and all amino acids derived through oxaloacetate was observed. The labelling patterns of amino acids were in agreement with their standard biosynthetic pathways, with two remarkable exceptions: isoleucine was synthesized via the citramalate pathway and lysine was synthesized via the 2-aminoadipate pathway which has previously been reported only in eukaryotic microorganisms.  相似文献   

18.
Versatility of polyketide synthases in generating metabolic diversity   总被引:1,自引:0,他引:1  
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.  相似文献   

19.
The repertoire of biosynthetic enzymes found in an organism is an important clue for elucidating the chemical structural variations of various compounds. In the case of fatty acids, it is essential to examine key enzymes that are desaturases and elongases, whose combination determine the range of fatty acid structures. We systematically investigated 56 eukaryotic genomes to obtain 275 desaturase and 265 elongase homologs. Phylogenetic and motif analysis indicated that the desaturases consisted of four functionally distinct subfamilies and the elongases consisted of two subfamilies. From the combination of the subfamilies, we then predicted the ability to synthesize six types of fatty acids. Consequently, we found that the ranges of synthesizable fatty acids were often different even between closely related organisms. The reason is that, as well as diverging into subfamilies, the enzymes have functionally diverged within the individual subfamilies. Finally, we discuss how the adaptation to individual environments and the ability to synthesize specific metabolites provides some explanation for the diversity of enzyme functions. This study provides an example of a potent strategy to bridge the gap from genomic knowledge to chemical knowledge.  相似文献   

20.
To elucidate the biosynthetic pathways for all proteinogenic amino acids in Xanthomonas campestris pv. campestris, this study combines results obtained by in silico genome analysis and by (13)C-NMR-based isotopologue profiling to provide a panoramic view on a substantial section of bacterial metabolism. Initially, biosynthesis pathways were reconstructed from an improved annotation of the complete genome of X. campestris pv. campestris B100. This metabolic reconstruction resulted in the unequivocal identification of biosynthesis routes for 17 amino acids in total: arginine, asparagine, aspartate, cysteine, glutamate, glutamine, histidine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Ambiguous pathways were reconstructed from the genome data for alanine, glycine, and isoleucine biosynthesis. (13)C-NMR analyses supported the identification of the metabolically active pathways. The biosynthetic routes for these amino acids were derived from the precursor molecules pyruvate, serine, and pyruvate, respectively. By combining genome analysis and isotopologue profiling, a comprehensive set of biosynthetic pathways covering all proteinogenic amino acids was unraveled for this plant pathogenic bacterium, which plays an important role in biotechnology as a producer of the exopolysaccharide xanthan. The data obtained lay ground for subsequent functional analyses in post-genomics and biotechnology, while the innovative combination of in silico and wet lab technology described here is promising as a general approach to elucidate metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号