首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
The large variety of clustering algorithms and their variants can be daunting to researchers wishing to explore patterns within their microarray datasets. Furthermore, each clustering method has distinct biases in finding patterns within the data, and clusterings may not be reproducible across different algorithms. A consensus approach utilizing multiple algorithms can show where the various methods agree and expose robust patterns within the data. In this paper, we present a software package - Consense, written for R/Bioconductor - that utilizes such an approach to explore microarray datasets. Consense produces clustering results for each of the clustering methods and produces a report of metrics comparing the individual clusterings. A feature of Consense is identification of genes that cluster consistently with an index gene across methods. Utilizing simulated microarray data, sensitivity of the metrics to the biases of the different clustering algorithms is explored. The framework is easily extensible, allowing this tool to be used by other functional genomic data types, as well as other high-throughput OMICS data types generated from metabolomic and proteomic experiments. It also provides a flexible environment to benchmark new clustering algorithms. Consense is currently available as an installable R/Bioconductor package (http://www.ohsucancer.com/isrdev/consense/).  相似文献   

3.
The wcd system is an open source tool for clustering expressed sequence tags (EST) and other DNA and RNA sequences. wcd allows efficient all-versus-all comparison of ESTs using either the d(2) distance function or edit distance, improving existing implementations of d(2). It supports merging, refinement and reclustering of clusters. It is 'drop in' compatible with the StackPack clustering package. wcd supports parallelization under both shared memory and cluster architectures. It is distributed with an EMBOSS wrapper allowing wcd to be installed as part of an EMBOSS installation (and so provided by a web server). AVAILABILITY: wcd is distributed under a GPL licence and is available from http://code.google.com/p/wcdest. SUPPLEMENTARY INFORMATION: Additional experimental results. The wcd manual, a companion paper describing underlying algorithms, and all datasets used for experimentation can also be found at www.bioinf.wits.ac.za/~scott/wcdsupp.html.  相似文献   

4.
mdclust--exploratory microarray analysis by multidimensional clustering   总被引:1,自引:0,他引:1  
MOTIVATION: Unsupervised clustering of microarray data may detect potentially important, but not obvious characteristics of samples, for instance subgroups of diagnoses with distinct gene profiles or systematic errors in experimentation. RESULTS: Multidimensional clustering (mdclust) is a method, which identifies sets of sample clusters and associated genes. It applies iteratively two-means clustering and score-based gene selection. For any phenotype variable best matching sets of clusters can be selected. This provides a method to identify gene-phenotype associations, suited even for settings with a large number of phenotype variables. An optional model based discriminant step may reduce further the number of selected genes.  相似文献   

5.
Computing topological parameters of biological networks   总被引:2,自引:0,他引:2  
Rapidly increasing amounts of molecular interaction data are being produced by various experimental techniques and computational prediction methods. In order to gain insight into the organization and structure of the resultant large complex networks formed by the interacting molecules, we have developed the versatile Cytoscape plugin NetworkAnalyzer. It computes and displays a comprehensive set of topological parameters, which includes the number of nodes, edges, and connected components, the network diameter, radius, density, centralization, heterogeneity, and clustering coefficient, the characteristic path length, and the distributions of node degrees, neighborhood connectivities, average clustering coefficients, and shortest path lengths. NetworkAnalyzer can be applied to both directed and undirected networks and also contains extra functionality to construct the intersection or union of two networks. It is an interactive and highly customizable application that requires no expert knowledge in graph theory from the user. AVAILABILITY: NetworkAnalyzer can be downloaded via the Cytoscape web site: http://www.cytoscape.org  相似文献   

6.
Standard and Consensus Clustering Analysis Tool for Microarray Data (SC2ATmd) is a MATLAB-implemented application specifically designed for the exploration of microarray gene expression data via clustering. Implementation of two versions of the clustering validation method figure of merit allows for performance comparisons between different clustering algorithms, and tailors the cluster analysis process to the varying characteristics of each dataset. Along with standard clustering algorithms this application also offers a consensus clustering method that can generate reproducible clusters across replicate experiments or different clustering algorithms. This application was designed specifically for the analysis of gene expression data, but may be used with any numerical data as long as it is in the right format. AVAILABILITY: SC2ATmd may be freely downloaded from http://www.compbiosci.wfu.edu/tools.htm.  相似文献   

7.
EXCAVATOR: a computer program for efficiently mining gene expression data   总被引:1,自引:0,他引:1  
Xu D  Olman V  Wang L  Xu Y 《Nucleic acids research》2003,31(19):5582-5589
Massive amounts of gene expression data are generated using microarrays for functional studies of genes and gene expression data clustering is a useful tool for studying the functional relationship among genes in a biological process. We have developed a computer package EXCAVATOR for clustering gene expression profiles based on our new framework for representing gene expression data as a minimum spanning tree. EXCAVATOR uses a number of rigorous and efficient clustering algorithms. This program has a number of unique features, including capabilities for: (i) data- constrained clustering; (ii) identification of genes with similar expression profiles to pre-specified seed genes; (iii) cluster identification from a noisy background; (iv) computational comparison between different clustering results of the same data set. EXCAVATOR can be run from a Unix/Linux/DOS shell, from a Java interface or from a Web server. The clustering results can be visualized as colored figures and 2-dimensional plots. Moreover, EXCAVATOR provides a wide range of options for data formats, distance measures, objective functions, clustering algorithms, methods to choose number of clusters, etc. The effectiveness of EXCAVATOR has been demonstrated on several experimental data sets. Its performance compares favorably against the popular K-means clustering method in terms of clustering quality and computing time.  相似文献   

8.
Clustering behaviours have been found in numerous multi-strain transmission models. Numerical solutions of these models have shown that steady-states, periodic, or even chaotic motions can be self-organized into clusters. Such clustering behaviours are not a priori expected. It has been proposed that the cross-protection from multiple strains of pathogens is responsible for the clustering phenomenon. In this paper, we show that the steady-state clusterings in existing models can be analytically predicted. The clusterings occur via semi-simple double zero bifurcation from the quotient networks of the models and the patterns which follow can be predicted through the stability analysis of the bifurcation. We calculate the stability criteria for the clustering patterns and show that some patterns are inherently unstable. Finally, the biological implications of these results are discussed.  相似文献   

9.
MOTIVATION: The optimization of the primer design is critical for the development of high-throughput SNP genotyping methods. Recently developed statistical models of the SNP-IT primer extension genotyping reaction allow further improvement of primer quality for the assay. RESULTS: Here we describe how the statistical models can be used to improve primer design for the assay. We also show how to optimize clustering of the SNP markers into multiplex panels using statistical model for multiplex SNP-IT. The primer set failure probability calculated by a model is used as a minimization function for both primer selection and primers clustering. Three clustering algorithms for the multiplex genotyping SNP-IT assay are described and their relative performance is evaluated. We also describe the approaches to improve the speed of primer design and clustering calculations when using the statistical models. Our clustering decreases the average failure probability of the marker set by 7-25%. The experimental marker failure rate in the multiplex reaction was reduced dramatically and success rate can be achieved as high as 96%. AVAILABILITY: The primer design using statistical models is freely available from www.autoprimer.com.  相似文献   

10.
MOTIVATION: Clustering technique is used to find groups of genes that show similar expression patterns under multiple experimental conditions. Nonetheless, the results obtained by cluster analysis are influenced by the existence of missing values that commonly arise in microarray experiments. Because a clustering method requires a complete data matrix as an input, previous studies have estimated the missing values using an imputation method in the preprocessing step of clustering. However, a common limitation of these conventional approaches is that once the estimates of missing values are fixed in the preprocessing step, they are not changed during subsequent processes of clustering; badly estimated missing values obtained in data preprocessing are likely to deteriorate the quality and reliability of clustering results. Thus, a new clustering method is required for improving missing values during iterative clustering process. RESULTS: We present a method for Clustering Incomplete data using Alternating Optimization (CIAO) in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster information such as cluster centroids and all available non-missing values in each iteration. To test the performance of the CIAO, we applied the CIAO and conventional imputation-based clustering methods, e.g. k-means based on KNNimpute, for clustering two yeast incomplete data sets, and compared the clustering result of each method using the Saccharomyces Genome Database annotations. The clustering results of the CIAO method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data. AVAILABILITY: The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request.  相似文献   

11.
Clustering protein sequences--structure prediction by transitive homology.   总被引:2,自引:0,他引:2  
MOTIVATION: It is widely believed that for two proteins Aand Ba sequence identity above some threshold implies structural similarity due to a common evolutionary ancestor. Since this is only a sufficient, but not a necessary condition for structural similarity, the question remains what other criteria can be used to identify remote homologues. Transitivity refers to the concept of deducing a structural similarity between proteins A and C from the existence of a third protein B, such that A and B as well as B and C are homologues, as ascertained if the sequence identity between A and B as well as that between B and C is above the aforementioned threshold. It is not fully understood if transitivity always holds and whether transitivity can be extended ad infinitum. RESULTS: We developed a graph-based clustering approach, where transitivity plays a crucial role. We determined all pair-wise similarities for the sequences in the SwissProt database using the Smith-Waterman local alignment algorithm. This data was transformed into a directed graph, where protein sequences constitute vertices. A directed edge was drawn from vertex A to vertex B if the sequences A and B showed similarity, scaled with respect to the self-similarity of A, above a fixed threshold. Transitivity was important in the clustering process, as intermediate sequences were used, limited though by the requirement of having directed paths in both directions between proteins linked over such sequences. The length dependency-implied by the self-similarity-of the scaling of the alignment scores appears to be an effective criterion to avoid clustering errors due to multi-domain proteins. To deal with the resulting large graphs we have developed an efficient library. Methods include the novel graph-based clustering algorithm capable of handling multi-domain proteins and cluster comparison algorithms. Structural Classification of Proteins (SCOP) was used as an evaluation data set for our method, yielding a 24% improvement over pair-wise comparisons in terms of detecting remote homologues. AVAILABILITY: The software is available to academic users on request from the authors. CONTACT: e.bolten@science-factory.com; schliep@zpr.uni-koeln.de; s.schneckener@science-factory.com; d.schomburg@uni-koeln.de; schrader@zpr.uni-koeln.de. SUPPLEMENTARY INFORMATION: http://www.zaik.uni-koeln.de/~schliep/ProtClust.html.  相似文献   

12.
MOTIVATION: With the advent of microarray chip technology, large data sets are emerging containing the simultaneous expression levels of thousands of genes at various time points during a biological process. Biologists are attempting to group genes based on the temporal pattern of their expression levels. While the use of hierarchical clustering (UPGMA) with correlation 'distance' has been the most common in the microarray studies, there are many more choices of clustering algorithms in pattern recognition and statistics literature. At the moment there do not seem to be any clear-cut guidelines regarding the choice of a clustering algorithm to be used for grouping genes based on their expression profiles. RESULTS: In this paper, we consider six clustering algorithms (of various flavors!) and evaluate their performances on a well-known publicly available microarray data set on sporulation of budding yeast and on two simulated data sets. Among other things, we formulate three reasonable validation strategies that can be used with any clustering algorithm when temporal observations or replications are present. We evaluate each of these six clustering methods with these validation measures. While the 'best' method is dependent on the exact validation strategy and the number of clusters to be used, overall Diana appears to be a solid performer. Interestingly, the performance of correlation-based hierarchical clustering and model-based clustering (another method that has been advocated by a number of researchers) appear to be on opposite extremes, depending on what validation measure one employs. Next it is shown that the group means produced by Diana are the closest and those produced by UPGMA are the farthest from a model profile based on a set of hand-picked genes. Availability: S+ codes for the partial least squares based clustering are available from the authors upon request. All other clustering methods considered have S+ implementation in the library MASS. S+ codes for calculating the validation measures are available from the authors upon request. The sporulation data set is publicly available at http://cmgm.stanford.edu/pbrown/sporulation  相似文献   

13.
A framework for gene expression analysis   总被引:1,自引:0,他引:1  
  相似文献   

14.
Many bioinformatics problems can be tackled from a fresh angle offered by the network perspective. Directly inspired by metabolic network structural studies, we propose an improved gene clustering approach for inferring gene signaling pathways from gene microarray data. Based on the construction of co-expression networks that consists of both significantly linear and non-linear gene associations together with controlled biological and statistical significance, our approach tends to group functionally related genes into tight clusters despite their expression dissimilarities. We illustrate our approach and compare it to the traditional clustering approaches on a yeast galactose metabolism dataset and a retinal gene expression dataset. Our approach greatly outperforms the traditional approach in rediscovering the relatively well known galactose metabolism pathway in yeast and in clustering genes of the photoreceptor differentiation pathway. AVAILABILITY: The clustering method has been implemented in an R package "GeneNT" that is freely available from: http://www.cran.org.  相似文献   

15.
MOTIVATION: Clustering has been used as a popular technique for finding groups of genes that show similar expression patterns under multiple experimental conditions. Many clustering methods have been proposed for clustering gene-expression data, including the hierarchical clustering, k-means clustering and self-organizing map (SOM). However, the conventional methods are limited to identify different shapes of clusters because they use a fixed distance norm when calculating the distance between genes. The fixed distance norm imposes a fixed geometrical shape on the clusters regardless of the actual data distribution. Thus, different distance norms are required for handling the different shapes of clusters. RESULTS: We present the Gustafson-Kessel (GK) clustering method for microarray gene-expression data. To detect clusters of different shapes in a dataset, we use an adaptive distance norm that is calculated by a fuzzy covariance matrix (F) of each cluster in which the eigenstructure of F is used as an indicator of the shape of the cluster. Moreover, the GK method is less prone to falling into local minima than the k-means and SOM because it makes decisions through the use of membership degrees of a gene to clusters. The algorithmic procedure is accomplished by the alternating optimization technique, which iteratively improves a sequence of sets of clusters until no further improvement is possible. To test the performance of the GK method, we applied the GK method and well-known conventional methods to three recently published yeast datasets, and compared the performance of each method using the Saccharomyces Genome Database annotations. The clustering results of the GK method are more significantly relevant to the biological annotations than those of the other methods, demonstrating its effectiveness and potential for clustering gene-expression data. AVAILABILITY: The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://dragon.kaist.ac.kr/gk.  相似文献   

16.
MOTIVATION: Biologists often employ clustering techniques in the explorative phase of microarray data analysis to discover relevant biological groupings. Given the availability of numerous clustering algorithms in the machine-learning literature, an user might want to select one that performs the best for his/her data set or application. While various validation measures have been proposed over the years to judge the quality of clusters produced by a given clustering algorithm including their biological relevance, unfortunately, a given clustering algorithm can perform poorly under one validation measure while outperforming many other algorithms under another validation measure. A manual synthesis of results from multiple validation measures is nearly impossible in practice, especially, when a large number of clustering algorithms are to be compared using several measures. An automated and objective way of reconciling the rankings is needed. RESULTS: Using a Monte Carlo cross-entropy algorithm, we successfully combine the ranks of a set of clustering algorithms under consideration via a weighted aggregation that optimizes a distance criterion. The proposed weighted rank aggregation allows for a far more objective and automated assessment of clustering results than a simple visual inspection. We illustrate our procedure using one simulated as well as three real gene expression data sets from various platforms where we rank a total of eleven clustering algorithms using a combined examination of 10 different validation measures. The aggregate rankings were found for a given number of clusters k and also for an entire range of k. AVAILABILITY: R code for all validation measures and rank aggregation is available from the authors upon request. SUPPLEMENTARY INFORMATION: Supplementary information are available at http://www.somnathdatta.org/Supp/RankCluster/supp.htm.  相似文献   

17.
Clustering analysis is a promising data-driven method for the analysis of functional magnetic resonance imaging (fMRI) data. The huge computation load, however, makes it difficult for the practical use. We use affinity propagation clustering (APC), a new clustering algorithm especially for large data sets to detect brain functional activation from fMRI. It considers all data points as possible exemplars through the minimisation of an energy function and message-passing architecture, and obtains the optimal set of exemplars and their corresponding clusters. Four simulation studies and three in vivo fMRI studies reveal that brain functional activation can be effectively detected and that different response patterns can be distinguished using this method. Our results demonstrate that APC is superior to the k-centres clustering, as revealed by their performance measures in the weighted Jaccard coefficient and average squared error. These results suggest that the proposed APC will be useful in detecting brain functional activation from fMRI data.  相似文献   

18.
19.
Previously we have found that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, can induce the clustering of cellular surface receptors including tumor necrosis factor receptor (TNFR) and epidermal growth factor receptor (EGFR). Since sphingolipids, especially ceramide, have been suggested as major players in ligand-induced receptor clustering, their involvement in this ligand-independent, chemical-induced receptor clustering was evaluated. It was shown that MNNG-induced EGFR clustering occurred primarily at lipid rafts, as nystatin, which can disrupt lipid raft structure, significantly decreasing MNNG-induced EGFR clustering. Lipidomic studies revealed that MNNG treatment induced profound changes in sphingolipids metabolism, which were not the same as those induced by EGF treatment. Acid sphingomyelinase (ASM) is responsible for hydrolyzing sphingomyelin to generate ceramide, and it was demonstrated that MNNG treatment caused ASM distribution changing from diffused state to concentrated area of cells, which colocalized with lipid rafts. Nystatin treatment also abolished the redistribution of ASM. In addition, blockage of ceramide production by ASM inhibitor imipramine interrupted MNNG-induced receptor clustering. Taken together, these data suggested that sphingolipids are involved in MNNG-induced receptor clustering; however, the specific species involved may be different from those involved in EGF-mediated receptor clustering.  相似文献   

20.
Scoring clustering solutions by their biological relevance   总被引:1,自引:0,他引:1  
MOTIVATION: A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. RESULTS: We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. AVAILABILITY: The software is available from the authors upon request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号