首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of uni- and bilateral cryptorchidism on testicular inhibin and testosterone secretion and their relationships to gonadotropins were studied in rats. Mature Wistar male rats weighing approximately 300 g were made either uni- or bilaterally cryptorchid. Testicular inhibin and testosterone content and plasma levels of LH and FSH were examined 2 weeks later. A similar remarkable decrease in testicular inhibin content was found in uni- and bilaterally cryptorchid testes. On the other hand, the testicular testosterone content was significantly decreased only in unilaterally cryptorchid testis with an inverse increase in the contralateral testis. Plasma testosterone levels were normal and plasma LH and FSH increased significantly in both of the cryptorchid groups. These results showed that cryptorchidism impairs both Sertoli and Leydig cell functions. While testosterone production was compensated by increased LH for 2 weeks, neither inhibin secretion nor storage changed in cryptorchid or contralateral testes during the same period.  相似文献   

2.
The effects of testosterone administration on testicular inhibin content and histology were studied in bilaterally cryptorchid rats, in which a marked decrease in testicular inhibin content had been observed. Mature male Wistar rats weighing approximately 300 g were made bilaterally cryptorchid by placing the testes in the abdominal cavity. Testosterone in oil, 0.1, 1.0 or 10 mg, was given i.m. each week. Testicular inhibin and testosterone content, histology and plasma LH, FSH and testosterone were studied 2 weeks later. Abnormally decreased testicular inhibin in cryptorchidism was restored toward normal by testosterone in a dose dependent manner in 2 weeks after surgery. Sertoli cell structure also recovered toward normal with increasing amount of testosterone. Decreased testicular testosterone content and Leydig cell atrophy were observed with suppressed plasma LH and FSH after testosterone. These results showed that the increased plasma concentration of testosterone had a stimulatory effect on the Sertoli cell function in cryptorchidism, in which compensated Leydig cell failure was demonstrated.  相似文献   

3.
The effects of chronic sub-lethal doses (7-14 mg kg-1 a day for 15 days) of quinalphos were evaluated in adult male rats for changes in testicular morphology, circulatory concentrations of hormones (LH, FSH, prolactin and testosterone), activities of acetylcholinesterase (AChE) and angiotensin converting enzyme (ACE) as well as metabolism of biogenic amines (dopamine, noradrenaline and 5-hydroxytryptamine (5-HT)) in the hypothalamus and pituitary. Hormones were assayed by radioimmunoassay or chemiluminescent immunoassay (testosterone). The enzymes were estimated after spectrophotometry and the biogenic amines by HPLC-electrochemistry. Sub-lethal chronic administration of quinalphos resulted in: decreased testicular mass and AChE activity in central as well as peripheral organs; increased serum LH, FSH, prolactin and testosterone concentrations; decreased pituitary or increased testicular ACE activity; severe disruption of spermatogenesis with increasing doses of pesticide; and no significant effects on dopamine, noradrenaline or 5-HT concentrations in the hypothalamus or pituitary. Administration of oestradiol (50 micrograms per rat a day) during pesticide treatment resulted in: a significant decrease in the mass of the testis and accessory sex organs; decreases in serum LH, FSH, testosterone concentrations; an increase in prolactin concentration; and a decrease in dopamine or an increase in noradrenaline and 5-HT in the hypothalamus or pituitary. Oestradiol had a marked effect: in pesticide-treated animals, the pesticide effects were significantly reversed. This indicates that in pesticide toxicity, the hypothalamo-pituitary-gonadal axis is operational. Since many of the observed pesticide effects could be inhibited by oestradiol, it is suggested that the pesticide acts directly on the gonadotrophins. In conclusion, quinalphos decreases fertility in adult male rats by affecting the pituitary gonadotrophins.  相似文献   

4.
Rats were given s.c. implants of high (HT) or low (LT) doses of testosterone and 10 days later hypophysectomy or sham-operation was performed. The rats were killed after 50 days. Unilateral efferent duct ligation was performed 16 h before death to measure seminiferous tubule fluid production and the increment in testicular inhibin values (inhibin production). Inhibin levels in testis cytosols were measured by a pituitary cell culture bioassay. The LT implants maintained serum testosterone at control values and decreased testicular weight whereas HT implants raised serum testosterone 3-fold and maintained testicular weight at 75-85% of pretreatment levels. In intact rats, LT implants caused no change in testicular inhibin content but decreased inhibin production; no significant changes occurred with HT implants. After hypophysectomy both values were significantly suppressed and could not be maintained by HT or LT implants. However, the HT implants partly restored inhibin production despite their inability to influence testicular inhibin content. In contrast, tubule fluid production depended mainly on intratesticular testosterone levels and occurred normally in intact or hypophysectomized rats with HT but not LT implants. These results indicate that inhibin and seminiferous tubule fluid production, both functions of the Sertoli cell, are under different hormonal control. The maintenance of inhibin production by the testis requires the support of pituitary hormones, presumably FSH, while seminiferous tubule fluid production requires testosterone, presumably through LH stimulation of Leydig cells. These findings are consistent with the hypothesis that inhibin is produced in response to trophic stimulation by FSH.  相似文献   

5.
To investigate the effect of prolactin (PRL) on testicular function, especially on spermatogenesis, testicular inhibin content in male rats treated with PRL was compared with those treated with HMG and testosterone. Mature Wistar male rats were given 10 or 50 IU of ovine PRL, 10 IU of HMG and 5 mg of testosterone, i. m. for 5 consecutive days and testes were removed for assessing inhibin content. Inhibin content was measured by a FSH suppressing activity in cultured rat anterior pituitary cells using aquous extract of testes. Five days' treatment with PRL, HMG, or testosterone did not influence testicular inhibin content in male rats. The possibility that these treatments had transiently affected testicular inhibin content, or that inhibin content did not reflect inhibin production was not ruled out.  相似文献   

6.
Adult rats (16-18/group) received a single intratesticular injection of 25, 100 or 400 microliters glycerol solution (7:3 in distilled water, v/v). Half of the rats in each group were given implants of testosterone, a testosterone-filled Silastic capsule (1.5 cm length) to provide serum values of testosterone within the normal range. After 1 week all animals were killed by decapitation. Serum concentrations of gonadotrophins, testosterone and immunoactive inhibin as well as testicular concentrations of testosterone and bioactive inhibin were determined. Testicular histology was studied in Paraplast-embedded tissue stained with PAS and haematoxylin-eosin. Glycerol treatment caused a dose-dependent ablation of spermatogenesis in a distinct area around the site of injection. Serum concentrations of FSH increased proportionally with increasing spermatogenic damage while serum LH and testosterone remained unaltered except with the highest glycerol dose. The rise in serum FSH was significantly correlated with serum (r = -0.70, P less than 0.001) and testicular (r = -0.66, P less than 0.001) concentrations of inhibin. A less pronounced correlation was found between LH and serum inhibin (r = 0.48). No correlation was found between the concentrations of LH and testicular inhibin or between serum concentrations of FSH and serum testosterone in the 25 and 100 microliters groups. Maintenance of low to normal serum testosterone concentrations by means of Silastic implants blocked the elevation of FSH in glycerol-treated animals but failed to affect significantly serum FSH in untreated rats. In all testosterone treated rats testicular inhibin concentrations were markedly reduced in the presence of lowered concentrations (7-14%) of testicular testosterone and unaltered serum FSH concentrations.  相似文献   

7.
Pregnant rats were injected twice daily for 1-3 days (Days 13-16 of pregnancy) with various doses of ovine LH. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10 i.u. hCG as well as by endogenous production of oestradiol-17 beta and inhibin. In control animals, no ovulation was induced by hCG given on Day 16 of pregnancy. An injection of hCG on Day 16 of pregnancy, however, induced ovulation in LH-treated animals (6.25-50.0 micrograms LH per injection, s.c. at 12-h intervals from Days 13 to 16). Concentrations of oestradiol-17 beta and inhibin activity in ovarian venous plasma increased after the administration of LH, indicating that development of ovulatory follicles had been induced. Abolishing the decline in plasma LH values therefore induced maturation of a new set of follicles or prevented the atresia of large antral follicles usually seen at this time of pregnancy. Plasma and pituitary concentrations of FSH decreased in LH-treated animals compared with those in control animals. Concentrations of progesterone, testosterone and oestradiol-17 beta in the peripheral plasma were not significantly different between the two groups. These results suggest that the increase in inhibin secretion from the ovary containing maturing follicles after LH treatment may suppress the secretion of FSH from the pituitary gland. These findings indicate that (1) the development of ovulatory follicles can be induced by the administration of exogenous LH during mid-pregnancy in the rat and (2) basal concentrations of FSH are enough to initiate follicular maturation even in the presence of active corpora lutea of pregnancy, when appropriate amounts of plasma LH are present.  相似文献   

8.
Plasma concentrations of luteinizing hormone (LH), prolactin and testosterone, and pituitary content of LH and prolactin, were measured in free-living starlings, Sturnus vulgaris , from hatching until 12 weeks of age.
Plasma LH concentrations were elevated in both sexes until four days after hatching, then they decreased. Throughout the period, plasma LH levels were low compared to those in breeding adults but were comparable to levels in post-breeding photorefractory adults. Pituitary LH content increased until 12 days after hatching, but this increase was due to physical growth during this period. Plasma prolactin concentration and pituitary prolactin content increased dramatically during the nestling period. The increase in pituitary prolactin content was in excess of that accounted for by increasing size. Plasma prolactin remained high during the immediate post-fledging period, but had started to decrease by 12 weeks after hatching. Plasma testosterone concentrations were lower than those in breeding adults, but generally higher than in post-breeding photorefractory adults. The gonads of both sexes remained regressed.
These results suggest that the reproductive system of nestling and juvenile starlings is in a similar state to that of post-breeding photorefractory adult starlings. The comparatively high levels of testosterone may reflect involvement in sexual differentiation.  相似文献   

9.
The hypothalamic LH-RH content and the concentrations of pituitary and plasma LH were measured at various ages in female rats treated daily with 10 micrograms testosterone propionate or 10 micrograms oestradiol-17beta from birth to Day 15. Persistent vaginal oestrus was induced in all the treated rats. Both hormones significantly reduced the hypothalamic LH-RH content and pituitary and plasma LH concentrations. Hypothalamic LH-RH increased after cessation of treatment but pituitary LH did not return to normal levels. Plasma LH levels were significantly lower than those in control rats. It is concluded that testosterone propionate and oestradiol-17beta (1) have a direct negative feed-back influence on the hypothalamus in the neonatal female rat; (2) alter the normal pattern of plasma and pituitary LH in developing female rats; (3) prevent the cyclic secretion of plasma LH after maturity; and (4) probably cause a chronic impairment in the release of LH-RH.  相似文献   

10.
In a number of species of seasonally breeding marsupial, the male is fertile throughout the year but there is a marked seasonal change in weight of the accessory sexual glands. In this study, body weight, prostate, epididymis and testis weights and plasma concentrations of testosterone, LH and prolactin and pituitary content of LH and prolactin were determined in male Bennett's wallabies shot at 1–2 month intervals over a period of 17 months. There was a highly significant increase in prostate weight which was coincident with the breeding season for this species. A small but significant increase in testis weight was also observed but epididymis weight remained unchanged. Plasma testosterone concentrations were significantly increased at a time coincident with the increase in prostate weight. Plasma prolactin and LH concentrations were low in most animals and remained unchanged during the study. In contrast, pituitary prolactin and LH contents showed highly significant changes, with increasing and peak hormone content preceding maximum prostate weight and plasma testosterone concentrations by several months. While these latter results suggest a role for prolactin and LH in the seasonal control of the reproductive organs in the male wallaby, a more intensive study of the pattern of secretion of these hormones and possibly more sensitive hormone assays are required to understand their relative roles in regulating the annual cycle of prostate growth.  相似文献   

11.
Adult male hamsters were given transplants of 1/2, 1, 2, 3 or 4 pituitaries under the kidney capsule and were killed 4 weeks later. Pituitary transplants produced a significant, dose-related increase in plasma prolactin levels, no changes in plasma LH and an increase in plasma FSH. Concentration of LH/hCG receptors in the testes was significantly increased in animals with 2 or 3 transplants and concentration of testicular prolactin receptors was significantly increased in those given 2 transplants. The apparent stimulatory effects of 1/2, 1 or 4 transplants on testicular LH/hCG and prolactin binding were not statistically significant. Some of the animals were injected with 0.3 i.u. hCG/g body weight 24 h before being killed. This produced a significant reduction in the levels of prolactin receptors and an apparent reduction in the levels of LH/hCG receptors in the testes. Elevation of plasma testosterone concentrations in response to hCG was significantly greater in animals given 3 or 4 pituitary transplants than in the remaining groups. These results provide further evidence that prolactin increases the number of LH/hCG and prolactin receptors in the hamster testis and suggest that changing the number of ectopic pituitary transplants may result in biphasic effects on the testis, with 2 or 3 transplants being maximally stimulatory.  相似文献   

12.
Daily afternoon injections of 25 micrograms melatonin for 12 weeks had no effect on testicular weights of male rats kept in long photoperiod (14L:10D); similarly, exposure of rats to short photoperiod (2L:22D) had no effect on gonadal weight. However, rats maintained in a long or short photoperiod and implanted every 2 weeks with a 15 mm Silastic pellet containing testosterone showed a significant reduction in testicular weight; this effect was more pronounced in rats exposed to a short photoperiod. Melatonin injections in testosterone-treated rats in a long photoperiod exacerbated the inhibitory effects of testosterone alone. Subcutaneous 2-weekly implants of a beeswax pellet containing 1 mg melatonin reversed the effects of the melatonin injections on relative testicular weights but not those due to short photoperiod exposure. Testosterone implants significantly reduced pituitary LH values in long and short photoperiod-exposed animals, more particularly in those exposed to short photoperiod. Melatonin injections alone or in combination with melatonin pellets did not further exaggerate the depression in pituitary LH due to testosterone alone in long photoperiod-exposed animals; similarly melatonin pellets did not reverse the depression in pituitary LH observed. No significant differences in plasma prolactin concentrations or in thyroxine concentrations or free thyroxine index were observed after any combination of treatments. We therefore suggest that the effects observed with short photoperiod may be due to melatonin.  相似文献   

13.
During prepubertal development in the golden hamster, there are major age-related changes in the number of testicular LH/hCG receptors. Between 22 and 35 days of age, there was greater than 10-fold increase in testicular LH/hCG receptors, followed by a decrease at Day 37. Concomitant with, but preceding slightly, the changes in receptors, were increases in plasma LH and FSH and most noticeably prolactin concentrations, between Days 10 and 20 of age. Inhibition of the increases in plasma levels of prolactin by daily injections of bromocriptine, between 14 and 31 days of age, resulted in suppressed testicular and seminal vesicle weights, and decreased content and concentration of testicular LH/hCG receptors. Similarly, the premature increase in plasma prolactin concentrations in prepubertal hamsters between 6 and 20 days of age, by means of ectopic pituitary transplants, resulted in increased testicular and seminal vesicle weights, as well as an increase in the concentration of testicular LH/hCG receptors. These results strongly suggest that increases in plasma prolactin values during development are important in enhancement of the development of testicular LH/hCG receptors.  相似文献   

14.
The effects of a thyroidectomy and thyroxine (T4) replacement on the spontaneous and human chorionic gonadotropin (hCG)-stimulated secretion of testosterone and the production of adenosine 3',5'-cyclic monophosphate (cAMP) in rat testes were studied. Thyroidectomy decreased the basal levels of plasma luteinizing hormone (LH) and testosterone, which delayed the maximal response of testosterone to gonadotropin-releasing hormone (GnRH) and hCG in male rats. T4 replacement in thyroparathyroidectomized (Tx) rats restored the concentrations of plasma LH and testosterone to euthyroid levels. Thyroidectomy decreased the basal release of hypothalamic GnRH, pituitary LH, and testicular testosterone as well as the LH response to GnRH and testosterone response to hCG in vitro. T4 replacement in Tx rats restored the in vitro release of GnRH, GnRH-stimulated LH release as well as hCG-stimulated testosterone release. Administration of T4 in vitro restored the release of testosterone by rat testicular interstitial cells (TICs). The increase of testosterone release in response to forskolin and androstenedione was less in TICs from Tx rats than in that from sham Tx rats. Administration of nifedipine in vitro resulted in a decrease of testosterone release by TICs from sham Tx but not from Tx rats. The basal level of cAMP in TICs was decreased by thyroidectomy. The increased accumulation of cAMP in TICs following administration of forskolin was eliminated in Tx rats. T4 replacement in Tx restored the testosterone response to forskolin. But the testosterone response to androstenedione and the cAMP response to forskolin in TICs was not restored by T4 in Tx rats. These results suggest that the inhibitory effect of a thyroidectomy on the production of testosterone in rat TICs is in part due to: 1) the decreased basal secretion of pituitary LH and its response to GnRH; 2) the decreased response of TICs to gonadotropin; and 3) the diminished production of cAMP, influx of calcium, and activity of 17beta-HSD. T4 may enhance testosterone production by acting directly at the testicular interstitial cells of Tx rats.  相似文献   

15.
Serum concentrations of LH, FSH and testosterone were measured monthly throughout the year in male bush rats. Testicular size and ultrastructure, LH/hCG, FSH and oestradiol receptors and the response of the pituitary to LHRH were also recorded. LH and FSH rose in parallel with an increase in testicular size after the winter solstice with peak gonadotrophin levels in the spring (September). The subsequent fall in LH and FSH levels was associated with a rise in serum testosterone which reached peak levels during summer (December and January). In February serum testosterone levels and testicular size declined in parallel, while the pituitary response to an LHRH injection was maximal during late summer. The number of LH/hCG, FSH and oestradiol receptors per testis were all greatly reduced in the regressed testes when compared to active testes. In a controlled environment of decreased lighting (shortened photoperiod), temperature and food quality, the testes of sexually active adult males regressed at any time of the year, the resultant testicular morphology and endocrine status being identical to that of wild rats in the non-breeding season. Full testicular regression was achieved only when the photoperiod, temperature and food quality were changed: experiments in which only one or two of these factors were altered failed to produce complete sexual regression.  相似文献   

16.
Plasma LH, FSH and testosterone were measured in testosterone-treated and untreated cryptorchid and castrated male rats. Exogenous testosterone prevented the increase in basal LH but not FSH levels seen in the untreated cryptorchids. Increases in plasma LH and FSH in response to LH-RH were greater in the cryptorchid as compared to the control group and this could not be reversed by exogenous testosterone, suggesting that spermatogenesis-related feedback factors regulate LH as well as FSH at the pituitary level in the intact rat. The results were consistent with a reduced but nevertheless significant secretion of inhibin by the cryptorchid testis. Basal plasma testosterone levels and ventral prostate weights were not significantly different from intact animals.  相似文献   

17.
Using a homogeneous inhibin preparation from human seminal plasma with a molecular weight of about 19 000, a sensitive and specific radioimmunoassay (RIA) for inhibin has been developed. None of the purified hormones tested, such as LH, FSH and prolactin from different species, showed any cross-reaction in this RIA. Steroid hormones such as testosterone, dihydrotestosterone, oestradiol-17 beta and progesterone did not interfere with the assay. The antiserum had an affinity constant (Ka) of 2.379 X 10(9). The assay sensitivity was 10-15 ng per tube and the intra- and inter-assay coefficients of variation were 5-7% (n = 6) and 15% (n = 10) respectively. The recovery for inhibin added to the serum of a castrated man was 95-110%. Using this RIA, inhibin levels in various biological fluids and tissues were measured. Normo-spermic semen contained significantly higher levels of inhibin than did oligospermic semen. Human prostate contained a substantial quantity of inhibin. Monkey semen, rat serum, and bovine, ovine and porcine follicular fluids cross-reacted in the RIA, while ram testicular inhibin and bull semen did not do so. In developing (9-28 days of age) male rats, circulating inhibin levels showed an inverse relationship with serum FSH levels. In female rats of this age endogenous inhibin concentrations changed in parallel with those of serum FSH.  相似文献   

18.
Treatment of adult male rats with oestradiol benzoate (OB) for 21 days significantly decreased the body, testicular and accessory sex organ weights but increased anterior pituitary weight. OB treatment also significantly suppressed circulating FSH and LH levels as well as plasma and testicular concentrations of testosterone. The seminiferous tubules and interstitial cells were partly atrophied, and there was some effect on spermatogenesis, with step 14 to 19 spermatids being fewer than normal. Rats treated with OB for 21 days were then treated daily with LH-RH analogue ((D-Leu6, des-Gly-NH2(10))-LH-RH-ethylamide), to see if testicular function could be recovered. Circulating gonadotrophins were significantly elevated, testicular histology was normal and testicular and plasma testosterone concentrations and the accessory sex organ weights remained suppressed. These results suggest possible extra-pituitary effects of the LH-RH analogue, including a direct action on the testes and/or accessory sex organs.  相似文献   

19.
The existence of a close relationship between energy status and reproductive function is well-documented, especially in females, but its underlying mechanisms remain to be fully unfolded. This study aimed to examine the effects of restriction of daily calorie intake, as well as chronic treatments with the metabolic hormones leptin and ghrelin, on the secretion of different reproductive hormones, namely pituitary gonadotropins and prolactin, as well as testosterone, in male rats. Restriction (50%) in daily food intake for 20 days significantly reduced body weight as well as plasma PRL and T levels, without affecting basal LH and FSH concentrations and testicular weight. Chronic administration of leptin to rats fed ad libitum increased plasma PRL levels and decreased circulating T, while it did not alter other hormonal parameters under analysis. In contrast, in rats subjected to 50% calorie restriction, leptin administration increased plasma T levels and reduced testis weight. Conversely, ghrelin failed to induce major hormonal changes but tended to increase testicular weight in fed animals, while repeated ghrelin injections in food-restricted males dramatically decreased plasma LH and T concentrations and reduced testis weight. In sum, we document herein the isolated and combined effects of metabolic stress (50% food restriction) and leptin or ghrelin treatments on several reproductive hormones in adult male rats. Overall, our results further stress the impact and complex way of action of different metabolic cues, such as energy status and key hormones, in reproductive function also in the male.  相似文献   

20.
Crossbred boars were (a) immunized against GnRH conjugated to human serum globulin (200 micrograms GnRH-hSG) in Freund's adjuvant at 12 weeks of age and boosted at weeks 18 and 20 (N = 10), (b) served as controls and received hSG only in adjuvant (N = 10), or castrated at weaning (N = 10). At 24 weeks of age (immediately before slaughter), the boars were challenged with saline or pig LH (1 microgram/10 kg body weight). After slaughter, fresh testicular fragments were incubated with pig LH (0.05 and 0.2 ng/2 ml medium) to assess the effects of immunization on Leydig cell function. Pituitary contents of LH and FSH, and testicular LH receptor content were also measured. The results indicated that plasma LH and testosterone concentrations, pituitary LH content, testicular LH receptor content, testis and sex accessory organ weights were significantly reduced in GnRH-immunized boars compared to hSG-adjuvant controls. However, plasma and pituitary FSH content were not affected by high antibody titres generated against GnRH. The testicular testosterone response to exogenous LH in vivo and in vitro was significantly reduced (P less than 0.05) in GnRH-immunized boars. These results indicate that active immunization against GnRH impairs pituitary and Leydig cell functions in boars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号