首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile tench (initial weight of about 57 g) were fed feed supplemented with fish oil (group FO), linseed oil (group LO), peanut oil (group PO), or rapeseed oil (group RO) containing 47% protein and 12% fat for 55 days. The inclusion of the tested oils was 50 g kg−1 (42% total crude lipids in diets). No significant differences were noted in the fish growth performance. The proximate composition of the whole fish bodies and the viscera (water, protein, fat, ash) was similar in all the dietary treatments (P > 0.05). Differences were noted only with regard to the ash content of the fillets (P < 0.05). The analysis of the fatty acids profiles of tench (whole fish) indicated there were significant differences in the total content of monoenoic and polyenoic (PUFA) acids. Significant differences were also noted with regard to n-3 PUFA and n-6 PUFA. Consequently, the ratio of n-3/n-6 acids ranged from 1.6 (group PO) to 2.08 (group LO; P < 0.05). The feed applied was not confirmed to have had an impact on the fatty acids profile of the tench fillets. There was a statistically significant intergroup difference in the content of saturated fatty acids (SFA) in tench viscera. In the fish fed vegetable oils supplemented diets, the level of SFA was lower (P < 0.05).  相似文献   

2.
The aim of this study was to investigate effects of fish oil replacement by sesame oil in combination with other vegetable oils in diets with regard to growth performance, feed utilization, desaturation and elongation, whole fish and liver fatty acid profiles of juvenile rainbow trout. Sesame oil (SO) used in the feeds was a mixture of linseed (LO), sunflower (SFO) and fish oil (FO), whereas the control diet contained only FO. Duplicate groups of 60 rainbow trout (~7 g) held under similar culture conditions were fed 2% of their body weight per day for 75 days. At the end of feeding trials, there was no difference in feed utilization efficiency or growth performance between the control group and the groups with added sesame oil (P > 0.05). However, viscerosomatic and hepatosomatic index values were significantly higher (P < 0.05) in fish fed with FO30/SO35/SFO35 diets. Results showed that total body lipid levels of fish fed diets containing sunflower oil were higher than in the other experimental groups (P < 0.05). However, crude lipid levels were similar in fish fed the control diet and the diet with sesame oil (FO30/LO35/SO35), which is sunflower oil‐free. Crude lipid levels of fish livers were not influenced by the diets (P > 0.05). Diets with sesame oil increased desaturation and elongation of 18 : 3n‐3 towards n‐3 HUFA. The conclusion was that the diet addition of sesame oil in combination with other vegetable oils increased the nutritional quality of the whole fish and liver of juvenile rainbow trout, in particular the docosahexaenoic acid (DHA) level. Therefore, sesame oil may be of interest for use in aquaculture.  相似文献   

3.
The intention of this experiment was to assess the effects of different sources of dietary lipid on the fatty acid composition of the fillet and liver and the flesh quality traits of rainbow trout (Oncorhynchus mykiss) after a 70‐day feeding period. Four iso‐nitrogenous (approx. 51% crude protein) and iso‐lipidic (approx. 14% crude lipid) experimental diets were formulated. The control diet contained only fish oil (FO) as the primary lipid source. In the other three dietary treatments, fish oil was replaced by 100% (LO30/SO35/SFO35) and 70% (FO30/LO35/SO35 or FO30/SO35/SFO35) sesame oil (SO), linseed oil (LO), or sunflower oil (SFO). Triplicate groups of 40 rainbow trout (~46 g) held under similar culture conditions were hand‐fed daily to apparent satiation for 70 days. At the end of the feeding trials, no difference in growth performance among experimental groups was noted (P > 0.05). There were some differences in the proximate composition of fish fillets (P < 0.05): the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels were highest in fish fed the control diet (P < 0.05); and EPA and DHA levels in fish fed the FO30/LO35/SO35 diet were closest to the control diet (P < 0.05). In contrast, fish fed the diet containing 100% plant oils (LO30/SO35/SFO35) had the highest level of total n‐6 fatty acids in the fillet and liver. In a 12‐day refrigerated storage at 1°C the thiobarbituric acid (TBA), trimethylamin nitrogen (TMA‐N) and pH values gradually increased in all dietary groups (P < 0.05). The chemical indicators of spoilage, TBA, TMA‐N, and pH values were within the limit of acceptability for human consumption.  相似文献   

4.
Fish oil (FO) has traditionally been used as the dominating lipid component in fish feed. However, FO is a limited resource and the price varies considerably, which has led to an interest in using alternative oils, such as vegetable oils (VOs), in fish diets. It is far from clear how these VOs affect liver lipid secretion and fish health. The polyunsaturated fatty acids (PUFAs), eicosapentanoic acid (EPA) and docosahexanioc acid (DHA), reduce the secretion of lipoproteins rich in triacylglycerols (TAGs) in Atlantic salmon, as they do in humans. The mechanism by which n-3 fatty acids (FAs) in the diet reduce TAG secretion is not known. We have therefore investigated the effects of rapeseed oil (RO) and n-3 rich diets on the accumulation and secretion of (3)H-glycerolipids by salmon hepatocytes. Salmon, of approximately 90 g were fed for 17 weeks on one of four diets supplemented with either 13.5% FO, RO, EPA-enriched oil or DHA-enriched oil until a final average weight of 310 g. Our results show that the dietary FA composition markedly influences the endogenous FA composition and lipid content of the hepatocytes. The intracellular lipid level in hepatocytes from fish fed RO diet and DHA diet were higher, and the expressions of the genes for microsomal transfer protein (MTP) and apolipoprotein A1 (Apo A1) were lower, than those in fish fed the two other diets. Secretion of hepatocyte glycerolipids was lower in fish fed the EPA diet and DHA diet than it was in fish fed the RO diet. Our results indicate that EPA and DHA possess different hypolipidemic properties. Both EPA and DHA inhibit TAG synthesis and secretion, but only EPA induces mitochondrial proliferation and reduce intracellular lipid. Expression of the gene for peroxisome proliferator-activated receptor alpha (PPARalpha) was higher in the DHA dietary group than it was in the other groups.  相似文献   

5.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

6.
为研究亚麻油替代不同水平的鱼油后对杂交鲟(Acipenser baeri Brandt♀×A. schrenckii Brandt♂)幼鱼[初均重(70.8±0.5) g]生长、脂肪酸组成、肝脏及肌肉脂肪沉积以及脂肪代谢的影响, 在油脂添加量为8%的饲料中用亚麻油分别替代0(LO0)、25%(LO25)、50%(LO50)、75%(LO75)和100%(LO100)的鱼油, 配制5种等氮(38.7%CP)等脂(10%CF)饲料。每组饲料随机设3个重复, 养殖周期为12周。结果表明,亚麻油替代100%的鱼油对杂交鲟幼鱼的生长没有显著影响, 而且随着饲料中亚麻油含量的上升, 饲料效率有所提高, 100%鱼油替代组的饲料效率明显高于100%鱼油组的(P<0.05); 但用亚麻油替代鱼油后, 肌肉和肝脏的粗脂肪含量以及血清中谷草转氨酶、谷丙转氨酶和乳酸脱氢酶活性明显升高(P<0.05); 肌肉亚麻酸和n-3多不饱和脂肪酸的含量与饲料中相应脂肪酸组成呈明显的线性相关关系(R2>0.69; P<0.05)。对于杂交鲟的脂肪代谢而言, 亚麻油的添加对血清中的游离脂肪酸、甘油三酯、高、低密度脂蛋白胆固醇的变化产生明显影响, 但亚麻油对血清总胆固醇和酮体影响不显著。考虑到亚麻油完全替代鱼油后, 肌肉中的EPA和DHA这两种长链高不饱和脂肪酸的含量仅下降了不到30%, 因此亚麻油应该是一种比较优质的鱼油替代品。  相似文献   

7.
配制了十种等氮等能的饲料饲喂3.53 g的异育银鲫幼鱼12周, 探讨异育银鲫对不同脂肪源的利用效果。十种饲料中分别添加8%的鱼油(FO)、椰子油(CNO)、玉米油(CO)、亚麻油(LO)、大豆油(SO)、菜籽油(RO)、1∶1鱼油-椰子油(FCNO)、1∶1鱼油-玉米油(FCO)、1∶1鱼油-亚麻油(FLO)和1∶1∶1∶1鱼油-椰子油-玉米油-亚麻油混合油(MIX)。每组饲料三个平行, 每个平行30尾。实验在循环水养殖系统中进行, 水温控制在(241)℃。结果表明, 在单一脂肪源中, 豆油组和椰子油组的增重率最高, 其次是菜籽油组, 鱼油、玉米油和亚麻油组的增重率最低。与相应的单一脂肪源相比, 饲料中鱼油与椰子油、玉米油或亚麻油1∶1混合后使用提高了异育银鲫的生长。摄食不同脂肪源饲料的异育银鲫血清生化指标、各组织的水分和脂肪含量差异不明显(P0.05)。肌肉脂肪酸与饲料脂肪源呈明显正相关。摄食豆油和菜籽油饲料的鱼体肌肉中20:4n-6较高, 而摄食亚麻油饲料的鱼则含有较高的20:5n-3和22:6n-3, 表明异育银鲫具有转化18:2n-6和 18:3n-3为高不饱和脂肪酸的能力。从实验可以看出, 豆油、椰子油和菜籽油是异育银鲫饲料中良好的脂肪源。    相似文献   

8.
The objective of this study was to investigate effects of oil supplements on the composition of fatty acids (FA), especially of trans11-C18:1 (vaccenic acid, TVA) and cis9, trans11-C18:2 conjugated linoleic acid (c9,t11-CLA), in bacterial (BF) and protozoal (PF) fractions of rumen fluid of sheep that was fractionated centrifugation. Four sheep were fed a diet consisting of meadow hay (960 g dry matter (DM)/day) and of barley grain (240 g DM/day), with sunflower oil (SO), rapeseed oil (RO) or linseed oil (LO) as supplements (60 g/day) in a Latin square design. The oils were used as they are rich in linoleic acid (SO, 533 g/kg of FA), oleic acid (RO, 605 g/kg of FA) and α-linolenic acid (LO, 504 g/kg of FA). Compared to the control (i.e., without oils), oil supplements influenced the concentration of unsaturated (UFA) and saturated fatty acids (SFA). In both BF and PF, the main fatty acids were palmitic and stearic, but PF contained a higher proportion of TVA and c9,t11-CLA than BF. In PF, TVA concentrations, ranked by oil supplement, were SO > RO > LO > Control (174, 150, 118, 74 g/kg of FA, respectively) and the c9,t11-CLA concentrations were RO > SO > LO > Control (59, 51, 27 and 15 g/kg of FA, respectively). Concentrations of c9,t11-CLA in PF were two to three times higher than in BF with all the oil supplements versus the control. Oil treatments impacted the c9,t11-CLA concentration in the fractions, especially SO and RO. The protozoal fraction contained a higher proportion of TVA and c9,t11-CLA than did the bacterial fraction, and dietary addition of SO, RO and LO resulted in a higher incorporation of TVA into both bacterial and protozoal microbial fractions, which probably positively affected TVA flow from the rumen.  相似文献   

9.
为研究饲料中鱼油添加水平对美洲鳗鲡(Anguilla rostrata)幼鱼生长性能、消化酶、体成分及肝脏脂肪代谢的影响, 以确定美洲鳗鲡幼鱼饲料中鱼油的适宜添加水平, 选用初始体重(8.34±0.12) g的美洲鳗鲡幼鱼800尾, 随机分成5组, 每组4个重复, 每个重复40尾; 分别投喂添加0(对照组)、3%(FO3组)、6%(FO6组)、9%(FO9组)和12%(FO12组)鱼油的试验饲料, 试验期56d。结果表明, 饲料中添加鱼油显著影响美洲鳗鲡幼鱼生长性能, FO6组美洲鳗鲡幼鱼的增重率、投饵率和饲料效率显著高于其他处理组(P<0.05)。与对照组相比, 鱼油添加组美洲鳗鲡幼鱼肠道脂肪酶活性显著提高(P<0.05), 蛋白酶和淀粉酶活性显著降低(P<0.05); FO6组、FO9组和FO12组全鱼粗脂肪含量显著提高(P<0.05), 全鱼粗蛋白质含量在FO12组显著降低(P<0.05), 全鱼水分和灰分含量无显著变化(P>0.05); FO9组和FO12组脂肪酸合成酶活性显著降低(P<0.05), FO12组脂蛋白酯酶和肝脂酶活性显著升高(P<0.05)。综上, 饲料中添加适宜鱼油水平可以提高美洲鳗鲡幼鱼的生长性能, 调节肠道脂肪酶活性、全鱼粗脂肪含量和肝脏脂肪代谢酶水平或活性; 美洲鳗鲡幼鱼获得最佳增重率和饲料效率时, 饲料中鱼油添加水平推荐为6.43%—6.78%。  相似文献   

10.
Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P > 0.05), FCR or SGR (P > 0.05) despite very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P < 0.05), whereas there were no effects on the apparent digestibility of other macronutrients when compared with the FO diet (P > 0.05). Organic vegetable oils did not undergo auto-oxidation as opposed to the FO, and the FO diet consequently had a significantly negative effect on the apparent lipid digestibility. Feed intake was not affected by oxidation of any oils. In conclusion, the study demonstrated that it is possible to fully substitute FO with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets.  相似文献   

11.
Enterocytes, the absorptive cells of the small intestine, mediate efficient absorption of dietary fat (triacylglycerol, TAG). The digestive products of dietary fat are taken up by enterocytes, re-esterified into TAG, and packaged on chylomicrons (CMs) for secretion into blood or temporarily stored within cytoplasmic lipid droplets (CLDs). Altered enterocyte TAG distribution impacts susceptibility to high fat diet associated diseases, but molecular mechanisms directing TAG toward these fates are unclear. Two enzymes, acyl CoA: diacylglycerol acyltransferase 1 (Dgat1) and Dgat2, catalyze the final, committed step of TAG synthesis within enterocytes. Mice with intestine-specific overexpression of Dgat1 (Dgat1Int) or Dgat2 (Dgat2Int), or lack of Dgat1 (Dgat1/), were previously found to have altered intestinal TAG secretion and storage. We hypothesized that varying intestinal Dgat1 and Dgat2 levels alters TAG distribution in subcellular pools for CM synthesis as well as the morphology and proteome of CLDs. To test this we used ultrastructural and proteomic methods to investigate intracellular TAG distribution and CLD-associated proteins in enterocytes from Dgat1Int, Dgat2Int, and Dgat1/ mice 2 h after a 200 μl oral olive oil gavage. We found that varying levels of intestinal Dgat1 and Dgat2 altered TAG pools involved in CM assembly and secretion, the number or size of CLDs present in enterocytes, and the enterocyte CLD proteome. Overall, these results support a model where Dgat1 and Dgat2 function coordinately to regulate the process of dietary fat absorption by preferentially synthesizing TAG for incorporation into distinct subcellular TAG pools in enterocytes.  相似文献   

12.
For aquaculture of marine species to continue to expand, dietary fish oil (FO) must be replaced with more sustainable vegetable oil (VO) alternatives. Most VO are rich in n-6 polyunsaturated fatty acids (PUFA) and few are rich in n-3 PUFA but Camelina oil (CO) is unique in that, besides high 18:3n-3 and n-3/n-6 PUFA ratio, it also contains substantial long-chain monoenes, commonly found in FO. Cod (initial mass ~ 1.4 g) were fed for 12 weeks diets in which FO was replaced with CO. Growth performance, feed efficiency and biometric indices were not affected but lipid levels in liver and intestine tended to increase and those of flesh, decrease, with increasing dietary CO although only significantly for intestine. Reflecting diet, tissue n-3 long-chain PUFA levels decreased whereas 18:3n-3 and 18:2n-6 increased with inclusion of dietary CO. Dietary replacement of FO by CO did not induce major metabolic changes in intestine, but affected genes with potential to alter cellular proliferation and death as well as change structural properties of intestinal muscle. Although the biological effects of these changes are unclear, given the important role of intestine in nutrient absorption and health, further attention should be given to this organ in future.  相似文献   

13.
Long-chain n-3 fatty acids (n-3 LCPUFA) improve blood pressure (BP) and lipid profile in adults and improve insulin sensitivity in rodents. We have previously shown that n-3 LCPUFA reduces BP and plasma triacylglycerol (TAG) in infants. Few studies have found effects on glucose homeostasis in humans. We explored possible effect modification by FADS, PPARG2, and COX2 genotypes to support potential effects of n-3 LCPUFA on metabolic markers in infants. Danish infants (133) were randomly allocated to daily supplementation with a teaspoon (~5 mL/day) of fish oil (FO) or sunflower oil (SO) from 9 to 18 months of age. Before and after the intervention, we assessed BP, erythrocyte n-3 LCPUFA, plasma lipid profile, insulin, and glucose in addition to functional single nucleotide polymorphisms in FADS, PPARG2, and COX2. At 18 months, plasma TAG was lower in the FO compared with SO group (p = 0.014). This effect was modified by PPARG2-Pro12Ala, as TAG only decreased among heterozygotes. FO supplemented PPARG2 Pro12Ala heterozygotes also had decreased plasma glucose compared with the SO group (p = 0.043). The effect of FO on mean arterial BP at 18 months was gender dependent (p = 0.020) and reduced in boys only (p = 0.028). Diastolic BP was, however, lower among all FO supplemented homozygous COX2-T8473C variant allele carriers compared with the SO group (p = 0.001). In conclusion, our results confirm that FO supplementation in late infancy reduces TAG and BP and indicates that the effects are mediated via peroxisome proliferator-activated receptor-γ and cyclooxygenase-2. Furthermore, FO reduced plasma glucose only in PPARG2 heterozygotes.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0396-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
Juveniles of gilthead sea bream were fed with plant protein-based diets with fish oil (FO diet) or vegetable oils (66VO diet) as dietary lipid sources. No differences in growth performance were found between both groups, and fish with an average body mass of 65–70 g were crowded (90–100 kg/m3) to assess the stress response within the 72 h after the onset of stressor. The rise in plasma cortisol and glucose levels was higher in stressed fish of group 66VO (66VO-S) than in FO group (FO-S), but the former stressed group regained more quickly the cortisol resting values of the corresponding non-stressed diet group. The cell–tissue repair response represented by derlin-1, 75 kDa glucose-regulated protein and 170 kDa glucose-regulated protein was triggered at a lower level in 66VO-S than in FO-S fish. This occurred in concert with a long-lasting up-regulation of glucocorticoid receptors, antioxidant enzymes, enzyme subunits of the mitochondrial respiratory chain, and enzymes involved in tissue fatty acid uptake and β-oxidation. This gene expression pattern allows a metabolic phenotype that is prone to “high power” mitochondria, which would support the replacement of fish oil with vegetable oils when theoretical requirements in essential fatty acids for normal growth are met by diet.  相似文献   

15.
A single flow continuous culture fermenter system was used in this study to investigate the influence of dietary lipid supplements varying in their fatty acid content on the DNA concentration of selected rumen bacteria. Four continuous culture fermenters were used in a 4×4 Latin square design with four periods of 10 d each. Treatment diets were fed at 45 g/d (DM basis) in three equal portions during the day. The diets were: 1) control (CON), 2) control with animal fat source (SAT), 3) control with soybean oil (SBO), and 4) control with fish oil (FO). Lipid supplements were added at 3% of diet DM. The concentrations of total volatile fatty acids and acetate were not affected (P>0.05) by lipid supplements. Concentrations of propionate, iso-butyrate, valerate and iso-valerate were highest (P<0.05) with the FO diet compared with the other treatment diets. The concentration of til C18:l (vaccenic acid, VA) in effluents increased (P<0.05) with SBO and FO diets and was highest with the SBO diet. The concentrations of C18:0 in effluents were lowest (P<0.05) for the FO diet compared with the other treatment diets. Concentrations of DNA for Anaerovibrio lipolytica, and Butyrivibrio proteoclasticus in fermenters were similar (P>0.05) for all diets. The DNA concentrations of Butyrivibrio fibrisolvens and Ruminococcus albus in fermenters were lowest (P<0.05) with the FO diet but were similar (P>0.05) among the other treatment diets. Selenomonas ruminantium DNA concentration in fermenters was highest (P<0.05) with the FO diet. In conclusion, SBO had no effect on bacterial DNA concentrations tested in this study and the VA accumulation in the rumen observed on the FO diet may be due in part to FO influence on B. fibrisolvens, R. albus, and S. ruminantium.  相似文献   

16.
A 60‐day feeding trial was conducted to evaluate the effects of dietary palm oil supplements on growth performances, hematology, liver anti‐oxidative enzymes and air exposure resistance of Japanese flounder, Paralichthys olivaceus (initial weights 2.56 ± 0.01 g). Five diets were tested wherein the dietary fish oil was replaced by palm oil at: 0% (Control), 20% (20%), 40% (40%), 50% (50%) and 60% (60%). After the feeding trial, the 20% dietary palm oil was shown to provide similar growth rates and feed efficiency with no negative effects compared to the control group (P > 0.05). Significantly lower growth rates and feed utilization were found in fish fed higher than 40% palm oil in the diet (P < 0.05). Except for total serum protein, the blood parameters, liver anti‐oxidative enzymes, stress resistance and proximate compositions of Japanese flounder were not altered, even with dietary palm oil up to 60% of the lipid source (P > 0.05). According to the present results, palm oil is a valuable lipid source substitute in Japanese flounder diets; around 20–40% fish oil can be replaced with palm oil with no negative effects.  相似文献   

17.
在基础配合饲料中添加(4%)不同脂肪源[鱼油、猪油、豆油、花生油、混合油I(鱼油:豆油=1:1)、混合油Ⅱ(鱼油:猪油:豆油:花生油=1:1:1:1)]配制成6组实验饲料,对体重(2.23±0.05)g的管角螺幼螺进行60d的饲养试验。结果表明,鱼油组摄食率(34.10g/d·ind·10^3)、增重率(64.33%)和特定生长率(0.79%)最高,与混合油I组没有显著差异(P〉0.05),并显著高于其他各组(P〈0.05),最低的为猪油组;肝体比没有显著差异(P〉0.05),猪油组最高(1.33),混合油I组最低(1.22);饲料转化率和存活率没有显著差异(P〉0.05);鱼油组粗蛋白含量(肌肉:18.35%;肝脏:17.55%)显著高于猪油组、豆油组、花生油组和混合油Ⅱ组,猪油组(2.96%)和鱼油组(2.86%)肝脏粗脂肪含量显著高于其他各组(P〈0.05),水分和灰分没有显著差异(P〉0.05);鱼油组EPA(肌肉:4.44%;肝脏:5.89%)和DHA(肌肉:4.53%;肝脏:5.65%)含量,n-3/n-6(肌肉:1.57;肝脏:1.69)均最高.与混合油I组没有显著差异(P〉0.05)。从人体健康和生产角度来说,以混合油I作为管角螺脂肪源不但可以得到较好的生长效果,还可以节约饲料成本。  相似文献   

18.
This study investigated the effects of crude rapeseed oil (RO) on lipid content and composition in muscle and liver of Arctic charr Salvelinus alpinus . Triplicate groups were fed diets containing fish oil (FO):RO ratio of 100:0, 75:25, 50:50 and 25:75 until two-fold mass increase. Total lipid content increased significantly in the liver with higher proportion of RO in the diet. Profound effects were seen in the fatty acid composition in the analysed tissues with a reduction in 20:5n-3 and 22:6n-3 and an increase in 18:2n-6 with higher RO content in the diets. A drop in cholesterol content was seen at 25% inclusion of RO in both tissues. Wild-caught fish contained a considerably higher amount of 20:4n-6 in both storage and membrane lipids of white muscle compared with the experimental fish.  相似文献   

19.
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.  相似文献   

20.
Atlantic salmon (Salmo salar) with an initial mass of 86 g were reared in 12 °C seawater for 8 weeks to a final average mass of 250 g. The fish were fed fish meal and fish oil-based diet supplemented with either 0%, 0.3% or 0.6% of tetradecylthioacetic acid (TTA), a 3-thia fatty acid. The specific growth rate (SGR) decreased with increasing dietary dose of TTA. The SGR of the group fed 0% of TTA (Control) was 1.8; that of the group fed 0.3% of TTA (TTA-L) was 1.7, and that of the group fed 0.6% of TTA (TTA-H) was 1.5. The mortality increased with increased dietary dose of TTA. The mitochondrial β-oxidation capacity in the liver of fish fed the TTA diets was 1.5 to 2 times higher than that of the Control fish. TTA supplementation caused substantial changes in the fatty acid compositions of the phospholipids (PL), triacylglycerols (TAG) and free fatty acids (FFA) of gills, heart and liver. The percentages of n−3 fatty acids, particularly 22:6 n−3, increased in fish fed diets containing TTA, while the percentage of the saturated FAs 14:0 and 16:0 in the PL fractions of the gills and heart decreased. The sum of monounsaturated FAs in the PL and TAG fractions from liver was significantly higher in fish fed diets containing TTA. TTA itself was primarily incorporated into PL. Two catabolic products of TTA (sulphoxides of TTA) were identified, and these products were particularly abundant in the kidney. TTA supplementation had no significant effect on the activity of the membrane-bound enzyme Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号