首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
The effects of a transient exposure to hydrogen peroxide (10 min at 200 microM H(2)O(2)) on pancreatic beta cell signal transduction and insulin secretion have been evaluated. In rat islets, insulin secretion evoked by glucose (16.7 mM) or by the mitochondrial substrate methyl succinate (5 mM) was markedly blunted following exposure to H(2)O(2). In contrast, the secretory response induced by plasma membrane depolarization (20 mM KCl) was not significantly affected. Similar results were obtained in insulinoma INS-1 cells using glucose (12.8 mM) as secretagogue. After H(2)O(2) treatment, glucose no longer depolarized the membrane potential (DeltaPsi) of INS-1 cells or increased cytosolic Ca(2+). Both DeltaPsi and Ca(2+) responses were still observed with 30 mM KCl despite an elevated baseline of cytosolic Ca(2+) appearing approximately 10 min after exposure to H(2)O(2). The mitochondrial DeltaPsi of INS-1 cells was depolarized by H(2)O(2) abolishing the hyperpolarizing action of glucose. These DeltaPsi changes correlated with altered mitochondrial morphology; the latter was not preserved by the overexpression of the antiapoptotic protein Bcl-2. Mitochondrial Ca(2+) was increased following exposure to H(2)O(2) up to the micromolar range. No further augmentation occurred after glucose addition, which normally raises this parameter. Nevertheless, KCl was still efficient in enhancing mitochondrial Ca(2+). Cytosolic ATP was markedly reduced by H(2)O(2) treatment, probably explaining the decreased endoplasmic reticulum Ca(2+). Taken together, these data point to the mitochondria as primary targets for H(2)O(2) damage, which will eventually interrupt the transduction of signals normally coupling glucose metabolism to insulin secretion.  相似文献   

2.
We investigated the role of the mitochondrial inner membrane permeability transition and subsequent release of cytochrome c into the cytosol during oxidative stress-evoked apoptosis. Sublethal oxidative stress was applied by treating L929 cells with 0.5 mM H2O2 for 90 min. Then the cellular localization of cytochrome c was examined by immunofluorescent staining and Western blotting. H2O2 treatment caused the permeability transition and pore formation, resulting in membrane depolarization and translocation of cytochrome c from the mitochondria into the cytosol. Pretreatment with cyclosporin A and aristolochic acid (to inhibit pore formation) significantly attenuated a reduction of the mitochondrial membrane potential, as well as signs of apoptosis such as DNA fragmentation, increased plasma membrane permeability, and chromatin condensation. Therefore, exposure to H2O2 caused the opening of permeability transition pores in the inner mitochondrial membrane. An essential role of cytosolic cytochrome c in the execution of apoptosis was demonstrated by its direct microinjection into the cytosol, thus bypassing the need for cytochrome c release from the mitochondrial intermembrane space. Microinjection of cytochrome c caused caspase-dependent apoptosis.  相似文献   

3.
Water transport across root systems of young cucumber (Cucumis sativus L.) seedlings was measured following exposure to low temperature (LT, 8-13 degrees C) for varying periods of time. In addition, the amount of water transported through the stems was evaluated using a heat-balance sap-flow gauge. Following LT treatment, hydrogen peroxide was localized cytochemically in root tissue by the oxidation of cerium (III) chloride. The effects of hydrogen peroxide on the hydraulic conductivity of single cells (Lp) in root tissues, and on the H+-ATPase activity of isolated root plasma membrane, have been worked out. Cytochemical evidence suggested that exposure of roots to LT stress caused a release of hydrogen peroxide in the millimolar range in the vicinity of plasma membranes. In response to a low root temperature (8 degrees C), the hydraulic conductivity of the root (Lp(r)) decreased by a factor of 4, and the half-times of water exchange increased by a factor of 5-6. Decreasing root temperatures from 25-13 degrees C increased the half-times of water exchange in a cell by a factor of 6-9. The measurement of axial water transport with a heat-balance sap-flow gauge showed that only a small amount of water was transported when 8 degrees C was imposed on cucumber roots. Lp and the H+-ATPase activity of the isolated root plasma membrane were very sensitive to externally applied hydrogen peroxide at a concentration of 1-16 mM. These observations suggest that the accumulation of hydrogen peroxide appears to mediate decreases in water transport in cucumber roots under low temperature.  相似文献   

4.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

5.
The shedding of plasma membrane vesicles has been shown to result from exposure of monolayer cell cultures to formaldehyde and other sulfhydryl blocking agents. Incubation of cells in concentrations of these agents as low as 5 to 10 mM for intervals as brief as fifteen minutes is effective (Scott, 1976). Plasma membrane vesiculation has been shown to be an energy-dependent process that requires Ca++ and physiological temperature. Following plasma membrane vesiculation, cell monolayers appear intact by phase microscopy and show only slight evidence of cell injury by electron microscopy. In view of these observations, the question has been raised whether plasma membrane vesiculation is compatible with continued cell growth and metabolism. The experiments described in this paper were designed to answer these questions. We pulse exposed 3T3 mouse embryo cells to concentrations of formaldehyde, between 2.5 and 250 mM, for intervals 15, 30 or 60 min. Cell momolayers were then washed in a variety of different media in an attempt to reverse the effect of formaldehyde on cells. Cell monolayers were thereafter assayed for the shedding of plasma membrane vesicles and for their ability to transport 2-deoxy-D-glucose. Cells were also replated in serum-containing medium and their ability to grow was assayed over a seven day interval. The results show an inverse relationship between the shedding of plasma membrane vesicles and the ability of the cells to transport nutrients and to grow. We interpret these data to suggest that the process of plasma membrane vesiculation results from a form of cell injury which blocks cellular metabolism and growth.  相似文献   

6.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2′-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

7.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2'-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

8.
A simple and reproducible model to identify biochemical changes associated with the transition from reversible to irreversible oxidant injury and cell death was established using rat pheochromocytoma PC12 cells. Cells were subjected to a transient oxidative stress induced by exposure to hydrogen peroxide (H2O2). Reversible loss of high-energy phosphates, induced by exposing cells to 0.2 mM H2O2, was preceded by transient increases in cytosolic calcium with no loss of plasma membrane integrity, as indexed by release of cytosolic enzymes. In contrast, permanent loss of high-energy phosphates, induced by treating cells with 0.5 mH H2O2, was associated with sustained rises in cytosolic-free calcium and increased oxidation of pyruvate and palmitate, two mitochondrial substrates. Initial production of pyruvate and lactate was inhibited by exposure to 0.5 mM H2O2 but returned to values comparable to control values at one hour after treatment with H2O2. Compromise of the plasma membrane was a late event, occurring between 1 and 2 hours after exposure to 0.5 mM H2O2. Collectively, these data indicate that irreversible loss of high-energy phosphates and cell death caused by oxidative stress is more closely associated with altered mitochondrial function than with impaired glycolysis.  相似文献   

9.
We examined the effects of K+ substitution for Na+ on the response of hepatocytes to vasopressin, and on the hepatocyte plasma-membrane potential. (1) High K+ (114 mM) had no effect on the initial increase in phosphorylase a activity in response to vasopressin, but abolished the ability of the hormone to maintain increased activity beyond 10 min. With increasing concentrations a decrease in the vasopressin response was first observed at 30-50 mM-K+. (2) High K+ (114 mM) had no effect on basal 45Ca2+ influx, but abolished the ability of vasopressin to stimulate influx. This effect was also first observed at a concentration of 30-50 mM-K+. (3) Increasing K+ had little effect on the plasma-membrane potential until a concentration of 40 mM was reached. With further increases in concentration the plasma membrane was progressively depolarized. (4) Replacement of Na+ with N-methyl-D-glucamine+ depolarized the plasma membrane to a much smaller extent than did replacement with K+, and was also much less effective in inhibiting the vasopressin response. (5) The plasma-membrane potential was restored to near the control value by resuspending cells in normal-K+ medium after exposure to high-K+ medium. The effects of vasopressin on phosphorylase activity were also restored. (6) We conclude that the Ca2+ channels responsible for vasopressin-stimulated Ca2+ influx are closed by depolarization of the plasma membrane.  相似文献   

10.
Escherichia coli cells challenged with low or high concentrations of hydrogen peroxide are killed via two different mechanisms and respond with morphological changes which are also dependent on the extracellular concentration of the oxidant. Treatment with low concentrations (less than 2.5 mM) of H2O2 is followed by an extensive cell filamentation which is dependent on the level of H2O2 or the time of exposure. In particular, addition of 1.75 mM H2O2 results in a growth lag of approximately 90 min followed by partial increase in optical density, which was mainly due to the onset of the filamentous response. In fact, microscopic analysis of the samples obtained from cultures incubated with the oxidant for various time intervals has revealed that this change in morphology becomes apparent after 90 min of exposure to H2O2 and that the length of the filaments gradually increases following longer time intervals. Analysis of the ability of these cells to form colonies has indicated a loss in viability in the first 90 min of exposure followed by a gradual recovery in the number of cells capable of forming colonies. Measurement of lactate dehydrogenase in culture medium (as a marker for membrane damage) has revealed that a small amount of this enzyme was released from the cells at early times (less than 150 min) but not after longer incubation periods (300 min). Cells exposed to high concentrations of H2O2 (greater than 10 mM) do not filament and their loss of viability is associated with a marked reduction in cell volume. In fact, treatment with 17.5 mM H2O2 resulted in a time-dependent decrease of the optical density, clonogenicity, and cellular volume. In addition, these effects were paralleled by a significant release in the culture medium of lactate dehydrogenase thus suggesting that the reduced cell volume may be dependent on membrane damage followed by loss of intracellular material. This hypothesis is supported by preliminary results obtained in electron microscopy studies. In conclusion, this study further demonstrates that the response of E. coli to hydrogen peroxide is highly dependent on the concentration of H2O2 and further stresses the point that low or high concentrations of the oxidant result in the production of different species leading to cell death via two different mechanisms and/or capable of specifically affecting the cell shape.  相似文献   

11.
A progressive conduction block leading to atrioventricular dissociation develops in perfused rabbit hearts within 20-30 min of exposure to Krebs containing 0.5 mM potassium (low K). A decrease in potassium permeability resulting in membrane depolarization (as seen in Purkinje fibers) could be responsible for the loss of excitability in nodal cells. We investigated the K dependence of the resting potential and the long-term effects of low K perfusion on the resting and action potentials of nodal cells in rabbit hearts. The resting potential of atrial, atrionodal, and nodal cells varied by 52, 41, and 34 mV per decade of change in Ko within the range of 5-50 mM K. Hyperpolarization of the resting membrane, a progressive decline in action potential amplitude, and a decrease in maximum rate of rise were observed in nodal fibers when exposed to low K. Loss of propagated activity occurred in the middle node within 20-30 min while the cells remained hyperpolarized. There was no evidence of electrogenic Na extrusion and it seems that the low nodal resting potential results from a high resting PNa/PK permeability ratio. The early decrease in rate of rise in low K probably reflects an increase in K-dependent outward currents, whereas the progressive deterioration and final loss of conducted electrical activity may result from an accumulation of internal Na and Ca overload produced by low K inhibition of the Na pump.  相似文献   

12.
The cytotoxicity of hydrogen peroxide is, at least partly, mediated by the induction of intralysosomal iron-catalyzed oxidative reactions with damage to lysosomal membranes and leakage of destructive contents. We hypothesize that minor such leakage may be nonlethal, and the ensuing cellular degeneration repairable. Consequently, we investigated, using a model system of cultured J-774 cells, the effects of hydrogen peroxide in moderate concentrations on cellular viability, lysosomal membrane integrity, morphology, and ATP and reduced glutathione concentrations. These parameters were initially estimated directly after a 30 min exposure to a bolus dose of hydrogen peroxide in phosphate buffered saline at 37°C, and then again following subsequent recovery periods of different lengths under ordinary culture conditions. All cells survived an exposure to 250 μM hydrogen peroxide for 30 min, whereas 350 and 500 μM exposure was lethal to a small fraction of cells. The oxidative stress caused early, time- and dose-dependent, partial relocalization of the lysosomotropic weak base acridine orange from the lysosomal compartment to the cytosol. This phenomenon is known to parallel leakage of damaging lysosomal contents such as hydrolytic enzymes. There were also signs of cellular damage in the form of surface blebbing and increased autophagocytosis, more marked with the higher doses of hydrogen peroxide. Also found was a rapid depletion of ATP and GSH. These alterations were all reversible, as long as cells were exposed to nonlethal amounts of hydrogen peroxide. Based on these and previous findings, we suggest that lysosomes are less stable organelles than has hitherto been assumed. Restricted lysosomal leakage might be a common event, for example, during sublethal oxidative stress, causing reversible, degenerative alterations, which are repaired by autophagocytosis.  相似文献   

13.
Incubation of rat liver mitochondria with 100-500 mM tyramine, a substrate for monoamine oxidases A and B (MAOs), in the presence of 30 mM Ca2+ induces matrix swelling, accompanied by collapse of membrane potential, efflux of endogenous Mg2+ and accumulated Ca2+ and oxidation of endogenous pyridine nucleotides. These effects are completely abolished in the presence of cyclosporin A, ADP, dithioerythritol and N-ethylmaleimide, thus confirming the induction of the mitochondrial membrane permeability transition (MPT). The observed partial protective effect exerted by catalase indicates the involvement of both MAO-derived hydrogen peroxide and aldehyde. Higher concentrations of tyramine (1-2 mM) are less effective or even completely ineffective. At these high concentrations tyramine has an inhibitory effect when the MPT is induced by 100 mM Ca2+. The MAO inhibitors clorgyline (50 mM) and pargyline (500 mM) completely protect against MPT induction by 100 mM tyramine but also inhibit the phenomenon, although with different efficacy, when it is induced by 100 mM Ca2+ in the absence of tyramine. Taken together, our data suggest that tyramine, clorgyline and pargyline act as modulators of the MPT either through a direct inducing/protective effect or by controlling hydrogen peroxide and aldehyde generation.  相似文献   

14.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

15.
Extracellular ATP has been shown to increase the Na+ permeability of human lymphocytes by 3 to 12-fold. The kinetics of this ATP-induced response were studied by measuring 22Na+ influx into chronic lymphocytic leukemic lymphocytes incubated in low-sodium media without divalent cations. ATP-stimulated uptake of 22Na-ions was linear over 4 min incubation and this influx component showed a sigmoid dependence on ATP concentration. Hill analysis yielded a K1/2 of 160 microM and a n value of 2.5. The nucleotide ATP-gamma-S (1-2 mM) gave 30% of the permeability increase produced by ATP, but UTP (2 mM) and dTTP (2 mM) had no effect on 22Na influx. The amiloride analogs 5-(N-ethyl-N-isopropyl) amiloride and 5-(N,N-hexamethylene) amiloride, which are potent inhibitors of Na(+)-H+ countertransport, abolished 72-95% of the ATP-stimulated 22Na+ influx. However, the involvement of Na(+)-H+ countertransport in the ATP-stimulated Na+ influx was excluded by three lines of evidence. Sodium influx was stimulated 7-fold by extracellular ATP but only 2.4-fold by hypertonic conditions which are known to activate Na(+)-H+ countertransport. Addition of ATP to lymphocytes produced no change in intracellular pH when these cells were suspended in isotonic NaCl media. Finally ATP caused a membrane depolarization of lymphocytes which is inconsistent with stimulation of electroneutral Na(+)-H+ exchange. These data suggest that ATP acts cooperatively to induce the formation of membrane channels which allow increased Na+ influx by a pathway which is partially inhibited by amiloride and its analogs.  相似文献   

16.
Abstract. Modifications in plasma membrane structure and permeability were observed in Chlorella sorokiniana following exposure to 0.2 gm−3(140 p.p.m.) O3 for 30 min. Sixty-eight per cent of the cells were plasmolysed after 15 min O3 exposure with disruption of organelles similar to that previously described in higher plants. Freeze-fracture exposed large areas of plasma membrane in 90% of the control cells and those exposed to O3for short periods. After 20 min O3 90% of the cells cross-fracture, which indicates a change in molecular interactions in the membrane exposed to O3 The earliest observed ultraslructural alteration is an aggregation of particles on the plasma membrane P face, statistically significant after 10 min O3 Changes in 86Rb influx occur during a similar time. After more extended exposure to O3 the plasma membrane P face shows regions of lipid phase transition to the crystalline state.  相似文献   

17.
Ethanol in the range of 0.76-2.40 M caused an immediate increase in the Ca permeability of the plasma membrane of resealed human red blood cell ghosts in which intracellular free Ca could be continuously monitored by means of the Ca chromophore arsenazo III. At a given concentration of ethanol, the Ca permeability increased markedly a few minutes following the mixing of the ghosts and the ethanol, and continued to increase over at least the next 30 min. Preincubating the ghosts in ethanol for 15, 60 and 120 min before measuring the rate of free Ca accumulation, progressively increased the effect of a given concentration of ethanol. These results indicate that the effect of a given concentration of ethanol is a complex function of concentration and exposure time. The effects of ethanol in this concentration range were completely reversible. The resealed ghosts used in these experiments were depleted of ATP to avoid interference from the Ca pump and all experiments were carried out with 150 mM KCl on both sides of the membrane to minimize changes in either the volume or membrane potential associated with activation of the Ca-dependent K channel.  相似文献   

18.
A series of genistein derivatives, prepared by alkylation and difluoromethylation, were tested for their inhibitory effects on the hydrogen peroxide induced impairment in human umbilical vein endothelial (HUVE-12) cells in vitro. The HUVE-12 cells were pretreated with either the vehicle solvent (DMSO), genistein, or different amounts of the genistein derivatives for 30 min before exposed to 1 mM hydrogen peroxide for 24 h. Cell apoptosis was determined by flow cytometry with propidium iodide (PI) staining. Cellular injury was estimated by measuring the lactate dehydrogenase (LDH) release. Data suggested that the genistein derivatives possessed a protective effect on HUVE-12 cells from hydrogen peroxide induced apoptosis and reduced LDH release. Among these derivatives, 7-difluoromethyl-5,4'-dimethoxygenistein exhibited the strongest activity against hydrogen peroxide induced apoptosis of HUVE-12 cells.  相似文献   

19.
The ESR data on the influence of membrane potential of the fusion of Sendai virus envelope with erythrocyte membrane are presented. The hyperpolarization of cell membrane takes place at low concentration of KCl (1-5 mM) in extracellular medium in the presence of valinomycin, while at high concentration of KCl (125-150 mM) its depolarization occurs. The hyperpolarization of erythrocyte plasma membrane is accompanied by the increase of its fusion with viral envelope and virus-induced hemolysis. At the same time depolarization of erythrocyte membrane leads to the decrease of virus fusion activity. This evidence together with previously obtained by patch-clamp method data on potential-dependence of virus-induced increase of cell membrane conductivity provide us an opportunity to make a proposal that the electric field membrane damage may be the initial stage of the virus-induced membrane fusion.  相似文献   

20.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号