首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

2.
A HPLC method with UV detection has been developed for the simultaneous determination of levomepromazine, clozapine and their main metabolites: N-desmethyl-levomepromazine, levomepromazine sulphoxide, O-desmethyl-levomepromazine, N-desmethylclozapine and clozapine N-oxide. The analytes were separated on a C8 reversed-phase column using a mobile phase composed of acetonitrile and a pH 2.0, 34 mM phosphate buffer containing 0.3% triethylamine (29:71, v/v). Loxapine was used as the internal standard. A reliable biological sample pre-treatment procedure by means of solid-phase extraction on C1 cartridges was implemented, which allows to obtain good extraction yields (>91%) for all analytes and appropriate sample purification from endogenous interference. The method was validated in terms of extraction yield, precision and accuracy. These assays gave RSD% values for precision always lower than 4.9% and mean accuracy values higher than 92%. The method is suitable for the therapeutic drug monitoring (TDM) of patients undergoing polypharmacy with levomepromazine and clozapine.  相似文献   

3.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

4.
Problems related to interaction of drugs with the dialysis membrane and to protein binding must be overcome in order to develop automated methods for drug analysis based on on-line dialysis, trace enrichment and HPLC. In order to study these problems, clozapine and its active metabolite N-desmethylclozapine were chosen as model compounds because they were found to interact with the dialysis membrane, and clozapine is highly protein bound. Addition of a cationic surfactant, dodecylethyldimethyl ammonium bromide, to the donor solution and to the plasma samples was found to inhibit interaction of the drugs with surfaces. The protein binding in plasma was disrupted prior to dialysis by lowering the pH with hydrochloric acid and the plasma proteins were solubilised with glycerol. The results obtained were used to develop a fully automated method for the determination of clozapine and N-desmethylclozapine in human plasma. More than 100 samples could be analysed within 24 h. The limit of detection in human plasma was 0.050 μmol/1 for clozapine and 0.055 μmol/1 for N-desmethylclozapine. Linearity was found for drug concentrations between 0.25–3 μmol/1. The relative standard deviations were between 1.2–6.7% and the method was applicable for therapeutic drug monitoring.  相似文献   

5.
A single solvent extraction step high-performance liquid chromatographic method is described for quantitating clozapine and its metabolite, N-desmethylclozapine, in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Symmetry C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–28.6 mM sodium acetate buffer, pH 2.6 (10:20:70, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 230 nm. The method was used to study the pharmacokinetics of clozapine after an intravenous bolus dose (2.5 mg/kg).  相似文献   

6.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

7.
A method of field-amplified sample stacking in capillary electrophoresis is described for the simultaneous determination of clozapine (CZP) and its metabolites, clozapine N-oxide (CNO), and desmethylclozapine (DMC), in human plasma. Plasma (0.2 mL) was extracted with organic solvents (ethyl acetate/n-hexane/isopropyl alcohol, 8/1/1 by volume) and centrifuged. An aliquot of supernatant was evaporated and suitably reconstituted with water for CE analysis. An untreated fused-silica capillary was used (31.2 cm; effective length, 20 cm; 50 microm i.d.) for the analysis. The background buffer was phosphate buffer (400 mM, pH 3.0) containing 50% ethylene glycol. The separation voltage was 25 kV with a detection wavelength of 214 nm. In the method validation, the calibration curves were linear (r > or = 0.98) over a range of 50-800 ng/mL for CZP, 30-180 ng/mL for CNO, and 25-600 ng/mL for DMC. The relative standard deviation (R.S.D.) and relative error (R.E.) were all less than 11% for the intra- and inter-day assays. The limits of detection (S/N = 3, electric-driven injection, 99.9s) of CZP, DMC, and CNO were 5, 5, and 10 ng/mL, respectively. After continuing treatment with the CZP tablets, a blood sample from one male schizophrenic patient (41-year-old, 62 kg) who had been receiving ongoing treatment with the CZP tablets was prepared and analyzed. The levels of CZP, DMC, and CNO were determined and the feasibility of the method's application in clinical treatment was proven.  相似文献   

8.
Cross-reactions with metabolites are an ever-recurring problem encountered in the use of radioimmunoassay techniques to determine active compounds in biological material. Metabolites may interfere with the assay of the parent drug to a variable extent. Taking 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine (clozapine as an example, it was shown that the extent to which the antiserum produced interacts with the parent drug and the metabolites can be estimated by determining the equilibrium constants and the kinetics. In the present case, therefore, it was advantageous to carry out the radioimmunoassay in disequilibrium, i.e. in order to differentiate the metabolites from the parent drug, the sample was incubated with the antiserum for 10 min, after which the labelled antigen was added and the reaction mixture again incubated for a brief, exactly timed interval. It was shown that cross-reactions did not occur in mixtures of clozapine and its N-demethyl and N-oxide metabolites in the propor tions 1:1:2 over a range of concentration of 1.5-48 ng clozapine per 100 microliter human plasma. The equilibrium constants measured with the clozapine goat antiserum were as follows: clozapine 1.2 X 10(8) M-1, the N-demethyl metabolite 4.6 X 10(7) M-1 and the N-oxide metabolite 3.7 X 10(7) M-1 (pH 7.5 and 20 degrees C).  相似文献   

9.
A miniaturized temperature-programmed packed capillary liquid chromatographic method with on-column large volume injection and UV detection for the simultaneous determination of the three selective serotonin reuptake inhibitors citalopram, fluoxetine, paroxetine and their metabolites in plasma is presented. An established reversed-phase C8 solid-phase extraction method was employed, and the separation was carried out on a 3.5-microm Kromasil C18 0.32x300 mm column with temperature-programming from 35 (3 min) to 100 degrees C (10 min) at 1.3 degrees C/min. The mobile phase consisted of acetonitrile-45 mM ammonium formate (pH 4.00) (25:75, v/v). The non-eluting sample focusing solvent composition acetonitrile-45 mM ammonium formate (pH 4.00) (3:97, v/v) allowed injection of 10 microl or more of the plasma extracts. The method was validated for the concentration range 0.05-5.0 microM, and the calibration curves were linear with coefficients of correlation >0.993. The limits of quantification for the antidepressants and their metabolites ranged from 0.05 to 0.26 microM. The within and between assay precision of relative peak height were in the range 2-22 and 2-15% relative standard deviation, respectively. The within and between assay recoveries were in the 61-99 and 54-92% range for the antidepressants, respectively, and between 52-102 and 51-102% for the metabolites.  相似文献   

10.
An automated method for simultaneous routine quantification of the antipsychotic drugs clozapine, olanzapine and their demethylated metabolites is described. The method included adsorption on a cyanopropyl (CPS) coated clean-up column (10 μm; 10×2.0 mm I.D.), washing off interfering serum constituents to waste, and separation on C18 ODS Hypersil reversed phase material (5 μm; 250×4.6 mm I.D.) using acetonitrile–water–tetramethylethylenediamine (37:62.6:0.4, v/v/v) adjusted to pH 6.5 with concentrated acetic acid. UV-detection was performed at 254 nm. The limit of quantification was 10–20 ng/ml. Relative day to day standard variations ranged between 4.5 and 13.5%. The method is suitable for routine monitoring of olanzapine and clozapine including their demethylated metabolites.  相似文献   

11.
A simultaneous assay for moricizine, its two sulphoxidation metabolites, morizine sulphoxide and moricizine sulphone, using high-performance liquid chromatography (HPLC) is described. The drug and metabolites and clozapine (internal standard) in biological fluids were extracted using pentanesulphonic acid into diethyl ether. The ethereal extract was evaporated to dryness and the residue was redissolved in the mobile phase (methanol-water-triethylamine, 65:35:0.5, v/v). The analyses were performed on a μBondapak reversed-phase C18 column housed in a Waters Z-module, linked to a C18 pre-column, with a run-time of 12 min. The retention times were 2.7, 3.5, 6.2 and 9.7 min for moricizine sulphone, moricizine sulphoxide, moricizine and clozapine, respectively. The recovery of the compounds from plasma ranged from 89.9% for the sulphoxide to 98.1% for clozapine. The limits of detection of the assay for moricizine, moricizine sulphoxide and moricizine sulphone were 20, 10 and 5 ng/ml, respectively.  相似文献   

12.
A selective and sensitive high-performance liquid chromatographic assay for a novel cognitive enhancer, X9121 (I), and its mono N-oxide metabolite, XG696 (II), in dog plasma has been developed. Compounds I, II and internal standard (I.S.) were first extracted from dog plasma using a solid-phase Bond Elut Certify I 10-ml LRC reservoir extraction cartridge. Chromatographic separation of I, II and I.S. was conducted on a reversed-phase Zorbax Stable Bond cyano column. Ammonium acetate buffer (0.05 M, pH 6)-acetonitrile-triethylamine (75:25:0.1, v/v) was used as the mobile phase. Detection of all three compounds was by UV light absorbance at 313 nm. Using 0.5 ml of dog plasma for extraction, the minimum quantifiable limit was 10 ng/ml and the assay was linear from 10 to 5400 ng/ml. The coefficients of variation for intra-day precision ranged from 2.2 to 8.5% for I and from 2.5 to 9.8% for II. The coefficients of variation for the inter-day precision for these two compounds ranged from 2.6 to 9.0% and from 3.6 to 16.2%, respectively. The absolute percent differences for the accuracy results were within 11.0% of the spiked concentrations. Compounds I and II were stable in frozen plasma at −20°C for at least 67 days.  相似文献   

13.
A sensitive and selective LC-MS-MS method for the determination of DPC 423 (I), an antithrombotic agent, is described. This method used a solid-phase extraction from 0.1 ml plasma with an Isolute C(2) cartridge. HPLC separation was carried out on a YMC ODS-AQ C(18) column (50x2 mm) at a flow-rate of 300 microliter/min with an analysis time of 5 min. Compounds were eluted using a mobile phase of H(2)O/CH(3)CN/HCOOH: 66:34:0.1 (v/v/v), pH 4.0. A structural analogue of I was used as the internal standard to account for variations in recovery and instrument response. Mass spectrometric detection was carried out with a PE Sciex API III(+) triple quadrupole mass spectrometer equipped with a Turbo IonSpray source as the LC-MS interface. Good intra-day and inter-day assay precision (<10% CV) and accuracy (<10% difference) were observed over a concentration range of 0.005-2.5 microM in plasma. The extraction recoveries were approximately 90% and the method was found to be linear for the assay (r(2)>0.999). The method has been successfully applied to discovery and preclinical pharmacokinetic studies, including a dose range-finding study and toxicokinetic exposure studies in rat and dog.  相似文献   

14.
Astragaloside IV is a novel cardioprotective agent extracted from the Chinese medical herb Astragalus membranaceus (Fisch) Bge. This agent is being developed for treatment for cardiovascular disease. Further development of Astragaloside IV will require detailed pharmacokinetic studies in preclinical animal models. Therefore, we established a sensitive and accurate high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) quantitative detection method for measurement of Astragaloside IV levels in plasma, urine as well as other biological samples including bile fluid, feces and various tissues. Extraction of Astragaloside IV from plasma and other biological samples was performed by Waters OASIS(trade mark) solid phase extraction column by washing with water and eluting with methanol, respectively. An aliquot of extracted residues was injected into LC/MS/MS system with separation by a Cosmosil C18 5 microm, 150 mm x 2.0 mm) column. Acetonitrile:water containing 5 microM NaAc (40:60, v/v) was used as a mobile phase. The eluted compounds were detected by tandem mass spectrometry. The average extraction recoveries were greater than 89% for Astragaloside IV and digoxin from plasma, while extraction recovery of Astragaloside IV and digoxin from tissues, bile fluid, urine and fece ranged from 61 to 85%, respectively. Good linearity (R2>0.9999) was observed throughout the range of 10-5000 ng/ml in 0.5 ml rat plasma and 5-5000 ng/ml in 0.5 ml dog plasma. In addition, good linearity (R2>0.9999) was also observed in urine, bile fluid, feces samples and various tissue samples. The overall accuracy of this method was 93-110% for both rat plasma and dog plasma. Intra-assay and inter-assay variabilities were less than 15.03% in plasma. The lowest quantitation limit of Astragaloside IV was 10 ng/ml in 0.5 ml rat plasma and 5 ng/ml in 0.5 ml dog plasma, respectively. Practical utility of this new LC/MS/MS method was confirmed in pilot pharmacokinetic studies in both rats and dogs following intravenous administration.  相似文献   

15.
A simple and reliable method for analyzing the concentrations of clozapine and its biologically active metabolite, norclozapine, in human serum or plasma has been developed. This method is based on reversed-phase high-performance liquid chromatography (HPLC) with automated solid-phase extraction (SPE). For HPLC analysis, samples and standards are prepared with an ASPEC automatic sample preparator using 100 mg Bond-Elut C18 SPE columns. The HPLC assay is an isocratic method with a mobile phase of acetonitrile-methanol-10 mM dipotassium hydrogenphosphate, pH 3.7 (30:2:100, v/v/v) at a flow-rate of 1.5 ml/min with a C18 reversed-phase column. Detection is performed with a diode array detector set at 220 nm and with peak purity analyses at 210–365 nm. The absolute recovery varied from 85 and 95%. The intra-assay coefficients of variation (C.V.s) were from 4.2 and 8.0% and the inter-assay C.V.s were from 1.1. to 9.3% at therapeutic drug concentrations. The detection limit is 15 nmol/l. The method has been developed for use in a clinical laboratory for therapeutic drug monitoring.  相似文献   

16.
A sensitive and specific GC/MS method for the determination of clozapine (CLZ) and its major metabolite norclozapine (NCLZ), in plasma has been developed, optimized and validated. Specimen preparation includes solid-phase extraction of both analytes using Bond-Elut Certify cartridge and further derivatization with TFAA. Clozapine-d8 was used as internal standard for the determination of CLZ and NCLZ. Limits of detection were 0.45 ng/mL for CLZ and 1.59 ng/mL for NCLZ, while limits of quantification were 1.37 ng/mL for CLZ and 4.8 ng/mL for NCLZ, as calculated by the calibration curves. The calibration curves were linear up to 600 ng/mL for CLZ and NCLZ. Absolute recovery ranged from 82.22% to 95.35% for both analytes. Intra- and interday accuracy was less than 7.13% and −12.52%, respectively, while intra- and interday precision was between 9.47% and 12.07%, respectively, for CLZ and NCLZ. The method covers all therapeutic range and proved suitable for the determination of CLZ and NCLZ not only in psychiatric patients but also in forensic cases with clozapine implication.  相似文献   

17.
A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artesunic acid (ARS), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARS and DQHS were analysed using an Econosil C8 column and a mobile phase of acetonitrile–0.05 M acetic acid (42:58, v/v) adjusted to pH 5.0 and electrochemical detection in the reductive mode. The mean recovery of ARS and DQHS over a concentration range of 50–200 ng/ml was 75.5% and 93.5%, respectively. The within-day coefficients of variation were 4.2–7.4% for ARS and 2.6–4.9% for DQHS. The day-to-day coefficients of variation were 1.6–9.6% and 0.5–8.3%, respectively. The minimum detectable concentration for ARS and DQHS in plasma was 4.0 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

18.
It was aimed to identify the cytochrome(s) P450 (CYPs) involved in the N-demethylation and N-oxidation of clozapine (CLZ) by various approaches using human liver microsomes or microsomes from human B-lymphoblastoid cell lines. The maximum rates of formation were measured in the microsomal fraction of human livers and the Michaelis-Menten kinetics one enzyme model was found to best fit the data with mean K(M) for CLZ N-oxide and N-desmethyl-CLZ of 336 and 120 microM, respectively. Significant correlations were observed between the maximum rates of formation (Vmax) for CLZ N-oxide and N-desmethyl-CLZ with the microsomal immunoreactive contents of CYP1A2 (r = 0.92, P < 0.009 and r = 0.77, P < 0.077; respectively) and CYP3A (r = 0.89, P < 0.02 and r = 0.82, P < 0.05; respectively). Antibodies directed against CYP1A2 and CYP3A inhibited formation of CLZ N-oxide in human liver microsomes by 10.7+/-6.1%) and 37.2+/-6.9% of control, respectively, whereas CLZ N-demethylation was inhibited by 32.2+/-15.4% and 33.6+/-7.4%, respectively. Troleandomycin (CYP3A inhibitor) and furafylline (CYP1A2 inhibitor) inhibited CLZ N-oxidation in human liver microsomes by 23.2+/-12.1% and 7.8+4.3%, respectively, whereas CLZ N-demethylation was inhibited by 17.5+/-13.9% and 25.6+/-16.5%, respectively. While ketoconazole did not inhibit N-oxidation of CLZ, the N-demethylation pathway was inhibited by 34.1+/-10.0%. Formation in stable expressed enzymes indicated involvement of CYP3A and CYP1A2 in CLZ N-oxide formation and CYP2D6, CYP1A2 and CYP3A4 in CLZ N-demethylation. This apparent involvement of CYP2D6 in the N-demethylation of CLZ did not corroborate with the findings of other experiments. In conclusion, these data indicate that while both CYP isoforms readily catalyze both metabolic routes in vitro, CYP1A2 and CYP3A4 are more important in N-demethylation and N-oxidation, respectively.  相似文献   

19.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

20.
Zolmitriptan, N-desmethylzolmitriptan, zolmitriptan N-oxide and an internal standard (an analogue of zolmitriptan) were extracted from plasma by a solid-phase extraction (SPE). Chromatography was performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric end-point detection. The standard curves were linear over the range 2-20 ng/ml for zolmitriptan and its metabolites in plasma. The mean inter- and intra-assay coefficients of variation over the range of the standard curves were less than 11%. The absolute recovery averaged 87, 58 and 77% for zolmitriptan. N-desmethylzolmitriptan and zolmitriptan N-oxide, respectively. The assay sensitivity was 0.5 ng for each analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号