首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Buschmann T  Fuchs SY  Lee CG  Pan ZQ  Ronai Z 《Cell》2000,101(7):753-762
Mdm2 is an E3 ubiquitin ligase for the p53 tumor suppressor protein. We demonstrate that Mdm2 is conjugated with SUMO-1 (sumoylated) at Lys-446, which is located within the RING finger domain and plays a critical role in Mdm2 self-ubiquitination. Whereas mutant Mdm2(K446R) is stabilized, it elicits increased degradation of p53 and concomitant inhibition of p53-mediated apoptosis. In vitro sumoylation of Mdm2 abrogates its self-ubiquitination and increases its ubiquitin ligase activity toward p53. Radiation caused a dose- and time-dependent decrease in the degree of Mdm2 SUMO-1 modification, which is inversely correlated with the levels of p53. Our results suggest that the maintenance of the intrinsic activity of a RING finger E3 ubiquitin ligase is sumoylation dependent and that reduced Mdm2 sumoylation in response to DNA damage contributes to p53 stability.  相似文献   

4.
5.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   

6.
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect is poorly defined. Here we demonstrate a key role for c-Abl in the nuclear accumulation of endogenous p53 in cells exposed to DNA damage. This effect of c-Abl is achieved by preventing the ubiquitination and nuclear export of p53 by Mdm2, or by human papillomavirus E6. c-Abl null cells fail to accumulate p53 efficiently following DNA damage. Reconstitution of these cells with physiological levels of c-Abl is sufficient to promote the normal response of p53 to DNA damage via nuclear retention. Our results help to explain how p53 is accumulated in the nucleus in response to DNA damage.  相似文献   

7.
p53 mediates DNA damage‐induced cell‐cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR‐S6K1 through p38α MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2‐mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR‐S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53‐dependent cell death. These findings thus establish mTOR‐S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1–Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging‐controlling Mdm2–p53 and mTOR‐S6K pathways.  相似文献   

8.
9.
10.
Homeostatic mechanisms are essential for the protection and adaptation of organisms in a changing and challenging environment. Previously, we have described molecular mechanisms that lead to robust homeostasis/adaptation under inflow or outflow perturbations. Here we report that harmonic oscillations occur in models of such homeostatic controllers and that a close relationship exists between the control of the p53/Mdm2 system and that of a homeostatic inflow controller. This homeostatic control model of the p53 system provides an explanation why large fluctuations in the amplitude of p53/Mdm2 oscillations may arise as part of the homeostatic regulation of p53 by Mdm2 under DNA-damaging conditions. In the presence of DNA damage p53 is upregulated, but is subject to a tight control by Mdm2 and other factors to avoid a premature apoptotic response of the cell at low DNA damage levels. One of the regulatory steps is the Mdm2-mediated degradation of p53 by the proteasome. Oscillations in the p53/Mdm2 system are considered to be part of a mechanism by which a cell decides between cell cycle arrest/DNA repair and apoptosis. In the homeostatic inflow control model, harmonic oscillations in p53/Mdm2 levels arise when the binding strength of p53 to degradation complexes increases. Due to the harmonic character of the oscillations rapid fluctuating noise can lead, as experimentally observed, to large variations in the amplitude of the oscillation but not in their period, a behavior which has been difficult to simulate by deterministic limit-cycle models. In conclusion, the oscillatory response of homeostatic controllers may provide new insights into the origin and role of oscillations observed in homeostatically controlled molecular networks.  相似文献   

11.
12.
The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.  相似文献   

13.
The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain‐containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63‐linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2‐dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage‐induced apoptosis, and tumorigenesis via a p53‐dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2–p53 pathway.  相似文献   

14.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   

15.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

16.
17.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.  相似文献   

18.
19.
Differences in the ubiquitination of p53 by Mdm2 and the HPV protein E6   总被引:5,自引:0,他引:5  
Camus S  Higgins M  Lane DP  Lain S 《FEBS letters》2003,536(1-3):220-224
The human papillomavirus (HPV) protein E6 can promote the ubiquitination of the p53 tumour suppressor in vitro, providing an explanation for the ability of E6 to induce p53 degradation in vivo and contribute to the potential tumorigenic effect of the virus. Instead, in non-infected cells, p53 levels are primarily destabilised by the ubiquitin E3 ligase activity of the Mdm2 protein. Here we have compared the effects of E6 and Mdm2 on p53 ubiquitination in vivo. We show that whereas in the presence of Mdm2 proteasome inhibitors induce the accumulation of ubiquitinated forms of p53, this does not occur in the presence of E6. Accordingly, we confirm that the effect of E6 and p53 is independent of the six C-terminal lysine residues in p53, which have previously been described to play an important role for effective ubiquitination and degradation of 53 mediated by Mdm2. We also show that other yet unidentified residues in p53 are also susceptible to ubiquitination. These results indicate that E6 does not induce ubiquitination of p53 in the same way as Mdm2 in order to promote its degradation, suggesting important differences between the Mdm2 and E6 effects on p53 degradation.  相似文献   

20.
Tumor suppressor protein p53 is regulated by two structurally homologous proteins, Mdm2 and MdmX. In contrast to Mdm2, MdmX lacks ubiquitin ligase activity. Although the essential interactions of MdmX are known, it is not clear how they function to regulate p53. The regulation of tumor suppressor p53 by Mdm2 and MdmX in response to DNA damage was investigated by mathematical modeling of a simplified network. The simplified network model was derived from a detailed molecular interaction map (MIM) that exhibited four coherent DNA damage response pathways. The results suggest that MdmX may amplify or stabilize DNA damage-induced p53 responses via non-enzymatic interactions. Transient effects of MdmX are mediated by reservoirs of p53∶MdmX and Mdm2∶MdmX heterodimers, with MdmX buffering the concentrations of p53 and/or Mdm2. A survey of kinetic parameter space disclosed regions of switch-like behavior stemming from such reservoir-based transients. During an early response to DNA damage, MdmX positively or negatively regulated p53 activity, depending on the level of Mdm2; this led to amplification of p53 activity and switch-like response. During a late response to DNA damage, MdmX could dampen oscillations of p53 activity. A possible role of MdmX may be to dampen such oscillations that otherwise could produce erratic cell behavior. Our study suggests how MdmX may participate in the response of p53 to DNA damage either by increasing dependency of p53 on Mdm2 or by dampening oscillations of p53 activity and presents a model for experimental investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号