首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.  相似文献   

2.
The mechanical and dynamical properties of the actin network are essential for many cellular processes like motility or division, and there is a growing body of evidence that they are also important for adhesion and trafficking. The leading edge of migrating cells is pushed out by the polymerization of actin networks, a process orchestrated by cross-linkers and other actin-binding proteins. In vitro physical characterizations show that these same proteins control the elastic properties of actin gels. Here we use a biomimetic system of Listeria monocytogenes, beads coated with an activator of actin polymerization, to assess the role of various actin-binding proteins in propulsion. We find that the properties of actin-based movement are clearly affected by the presence of cross-linkers. By monitoring the evolution of marked parts of the comet, we provide direct experimental evidence that the actin gel continuously undergoes deformations during the growth of the comet. Depending on the protein composition in the motility medium, deformations arise from either gel elasticity or monomer diffusion through the actin comet. Our findings demonstrate that actin-based movement is governed by the mechanical properties of the actin network, which are fine-tuned by proteins involved in actin dynamics and assembly.  相似文献   

3.
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this ‘in silico’ actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model''s predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.  相似文献   

4.
5.
For cells, the growth of a dense array of branched actin filaments organized by the actin-related proteins 2 and 3 (Arp2/3) complex at the plasma membrane offers an explanation as to how movement is produced, and this arrangement is considered to be optimal for motility. Here, we challenged this assumption by using an in vitro system of polystyrene beads in cell extracts that contained a complex mix of actin polymerization proteins as in vivo. We employed the surface of the bead as a reactor where we mixed two different actin polymerization-activating factors, the Arp2/3 complex and the vasodilator-stimulated phosphoprotein (VASP), to examine their contribution to actin-based movement and filament organization. We varied the coating of the bead surface but left the extracts identical for all assays. We found that the degree of filament alignment in the actin comet tails depended on the surface ratio of VASP to Arp2/3. Alignment of actin filaments parallel to the direction of bead movement in the presence of VASP was accompanied by an abrupt 7-fold increase in velocity that was independent of bead size and by hollowing out of the comets. The actin filament-bundling proteins fimbrin and fascin did not appear to play a role in this transformation. Together with the idea that VASP enhances filament detachment and with the presence of pulling forces at the rear of the bead, a mesoscopic analysis of movement provides a possible explanation for our results.  相似文献   

6.
Actin-based motility: from molecules to movement   总被引:5,自引:0,他引:5  
Extensive progress has been made recently in understanding the mechanism by which cells move and extend protrusions using site-directed polymerization of actin in response to signalling. Insights into the molecular mechanism of production of force and movement by actin polymerization have been provided by a crosstalk between several disciplines, including biochemistry, biomimetic approaches and computational studies. This review focuses on the biochemical properties of the proteins involved in actin-based motility and shows how these properties are used to generate models of force production, how the predictions of different theoretical models are tested using a biochemically controlled reconstituted motility assay and how the changes in motility resulting from changes to the concentrations of components of the assay can help understand diverse aspects of the motile behavior of living cells.  相似文献   

7.
Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 microm) nor by increasing the viscosity of the medium by 10(5)-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.  相似文献   

8.
Site-directed actin polymerisation in response to signalling is responsible for the formation of cell protrusions. These elementary 'actin-based motility processes' are involved in cell locomotion, cell metastasis, organ morphogenesis and microbial pathogenesis. We have reconstituted actin-based propulsive movement of particles of various sizes and geometries (rods, microspheres) in a minimum motility medium containing five pure proteins. The ATP-supported treadmilling of actin filaments, regulated by Actin Depolymerizing Factor (ADF/cofilin), profilin and capping proteins provides the thermodynamic basis for sustained actin-based movement. Local activation of Arp2/3 complex at the surface of the particle promotes autocatalytic barbed end branching of filaments, generating a polarized arborescent array. Barbed end growth of branched filaments against the surface generates a propulsive force and is eventually arrested by capping proteins. Understanding the mechanism of actin-based movement requires elucidation of the biochemical properties and mode of action of Arp2/3 complex in filament branching, in particular the role of ATP binding and hydrolysis in Arp2/3, and a physical analysis of the movement of functionalised particles. Because the functionalisation of the particle by an activator of Arp2/3 complex (N-WASP or the Listeria protein ActA) and the concentrations of effectors in the medium are controlled, the reconstituted motility assay allows an analysis of the mechanism of force production at the mesoscopic and molecular levels.  相似文献   

9.
We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads.  相似文献   

10.
The directional movement on a microtubule of a plastic bead connected elastically to a single one-headed kinesin motor is studied theoretically. The kinesin motor can bind and unbind to periodic binding sites on the microtubule and undergo conformational changes while catalyzing the hydrolysis of ATP. An analytic formalism relating the dynamics of the bead and the ATP hydrolysis cycle of the motor is derived so that the calculation of the average velocity of the bead can be easily carried out. The formalism was applied to a simple three-state biochemical model to investigate how the velocity of the bead movement is affected by the external load, the diffusion coefficient of the bead, and the stiffness of the elastic element connecting the bead and the motor. The bead velocity was found to be critically dependent on the diffusion coefficient of the bead and the stiffness of the elastic element. A linear force-velocity relation was found for the model no matter whether the bead velocity was modulated by the diffusion coefficient of the bead or by the externally applied load. The formalism should be useful in modeling the mechanisms of chemimechanical coupling in kinesin motors based on in vitro motility data.  相似文献   

11.
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic tonic spiking with either periodic or chaotic tonic spiking. Pontryagins averaging technique is used to locate the periodic orbits in the phase space.  相似文献   

12.
It has been shown that myosin molecules attached to Covaspheres can "walk along" polar actin filament in vitro. The driving force for this movement seems to explain only about 1% of the isometric tension developed by a muscle fibre. Therefore, the driving force for the bead movement seems to be incompatible with that found in muscle, and the bead movement cannot be considered as a model for muscle contraction. The origin of the bead movement may be related to a "molecular jet" process, resulting from the rapid ejection of the MgATP splitting products. This "molecular jet" might also explain the movements of many cellular organelles.  相似文献   

13.
In eukaryotic cells, localized actin polymerization is able to deform the plasma membrane and push the cell forward. Depolymerization of actin filaments and diffusion of actin monomers ensure the availability of monomers at sites of polymerization, and therefore these processes must play an active role in cellular actin dynamics. Here we reveal experimental evidence that actin gel growth can be limited by monomer diffusion, consistent with theoretical predictions. We study actin gels formed on beads coated with ActA (and ActA fragments), the bacterial factor responsible for actin-based movement of Listeria monocytogenes. We observe a saturation of gel thickness with increasing bead radius, the signature of diffusion control. Data analysis using an elastic model of actin gel growth gives an estimate of 2×10–8 cm–2 s–1 for the diffusion coefficient of actin monomers through the gel, ten times less than in buffer, and in agreement with literature values in bulk cytoskeleton, providing corroboration of our model. The depolymerization rate of actin filaments and the elastic modulus of the gel are also evaluated. Furthermore, we qualitatively examine the different actin gels produced when ActA fragments interact with either VASP or the Arp2/3 complex.  相似文献   

14.
Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (-/-) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association-dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 x 10(8) M-1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment-detachment of VASP to F-actin allows its sliding along the growing filament.  相似文献   

15.
Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using ellipsoidal beads resembling the geometry of Listeria monocytogenes. Beads coated uniformly with the L. monocytogenes ActA protein migrated equally well in either of two distinct orientations, with their long axes parallel or perpendicular to the direction of motion, while intermediate orientations were unstable. When beads were coated with a fluid lipid bilayer rendering ActA laterally mobile, beads predominantly migrated with their long axes parallel to the direction of motion, mimicking the orientation of motile L. monocytogenes. Generating an accurate biophysical model to account for our observations required the combination of elastic-propulsion and tethered-ratchet actin-polymerization theories. Our results indicate that the characteristic orientation of L. monocytogenes must be due to polarized ActA rather than intrinsic actin network forces. Furthermore, viscoelastic stresses, forces, and torques produced by individual actin filaments and lateral movement of molecular complexes must all be incorporated to correctly predict large-scale behavior in the actin-based movement of nonspherical particles.  相似文献   

16.
The two strands of a DNA molecule with a repetitive sequence can pair into many different basepairing patterns. For perfectly periodic sequences, early bulk experiments of P?rschke indicate the existence of a sliding process, permitting the rapid transition between different relative strand positions. Here, we use a detailed theoretical model to study the basepairing dynamics of periodic and nearly periodic DNA. As suggested by P?rschke, DNA sliding is mediated by basepairing defects (bulge loops), which can diffuse along the DNA. Moreover, a shear force f on opposite ends of the two strands yields a characteristic dynamic response: An outward average sliding velocity v approximately 1/N is induced in a double strand of length N, provided f is larger than a threshold fc. Conversely, if the strands are initially misaligned, they realign even against an external force f < fc. These dynamics effectively result in a viscoelastic behavior of DNA under shear forces, with properties that are programmable through the choice of the DNA sequence. We find that a small number of mutations in periodic sequences does not prevent DNA sliding, but introduces a time delay in the dynamic response. We clarify the mechanism for the time delay and describe it quantitatively within a phenomenological model. Based on our findings, we suggest new dynamical roles for DNA in artificial nanoscale devices. The basepairing dynamics described here is also relevant for the extension of repetitive sequences inside genomic DNA.  相似文献   

17.
Actin polymerization drives cell membrane protrusions and the propulsion of intracellular pathogens. The molecular mechanisms driving actin polymerization are not yet fully understood. Various mathematical models have been proposed to explain how cells convert chemical energy released upon actin polymerization into a pushing force on a surface. These models have attempted to explain puzzling properties of actin-based motility, including persistent attachment of the network to the membrane during propulsion and the interesting trajectories of propelled particles. These models fall generally into two classes: those requiring filament (+)-ends to fluctuate freely from the membrane to add subunits, and those where filaments elongate with their (+)-ends persistently associated with surface through filament end-tracking proteins ("actoclampin" models). This review compares and contrasts the key predictions of these two classes of models with regard to force-velocity profiles, and evaluates them with respect to experiments with biomimetic particles, and the experimental evidence on the role of end-tracking proteins such as formins and nucleation-promoting factors in actin-based motility.  相似文献   

18.
Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.  相似文献   

19.

Background

Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to possess multistability. The mechanisms supporting multistability of bursting regimes are not well understood or classified.

Methodology/Principal Findings

Our study is focused on determining the bio-physical mechanisms underlying different types of co-existence of the oscillatory and silent regimes observed in a neuronal model. We develop a low-dimensional model typifying the dynamics of a single leech heart interneuron. We carry out a bifurcation analysis of the model and show that it possesses six different types of multistability of dynamical regimes. These types are the co-existence of 1) bursting and silence, 2) tonic spiking and silence, 3) tonic spiking and subthreshold oscillations, 4) bursting and subthreshold oscillations, 5) bursting, subthreshold oscillations and silence, and 6) bursting and tonic spiking. These first five types of multistability occur due to the presence of a separating regime that is either a saddle periodic orbit or a saddle equilibrium. We found that the parameter range wherein multistability is observed is limited by the parameter values at which the separating regimes emerge and terminate.

Conclusions

We developed a neuronal model which exhibits a rich variety of different types of multistability. We described a novel mechanism supporting the bistability of bursting and silence. This neuronal model provides a unique opportunity to study the dynamics of networks with neurons possessing different types of multistability.  相似文献   

20.
Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号