首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.  相似文献   

2.
Two nuclear cAMP-independent protein kinases (designated PK-N1 and PK-N2) were purified from rat ventral-prostate and liver. The yield of enzyme units was 4-5% and 7-9% for each enzyme from the prostatic nuclei and liver nuclei, respectively. The average fold purification for prostatic nuclear protein kinase N1 and N2 was 1360 and 1833, respectively. The respective average specific activity of the two enzymes towards casein was 81,585 and 110,000 nmol 32P incorporated/hr/mg of enzyme. Protein kinase N1 comprised one polypeptide of Mr 35,000 which underwent phosphorylation in the presence of Mg2+ + ATP. Protein kinase N2 comprised two polypeptides Mr 40,000 and 30,000 of which only the Mr 30,000 polypeptide was autophosphorylated. Both enzymes were active towards casein, phosvitin, dephosphophosvitin, spermine-binding protein, and non-histone proteins in vitro. Little activity was detected towards histones. Both enzymes were stimulated by 150-200 mM NaCl. MgCl2 requirement varied with the protein substrate but was between 2-4 mM for both enzymes. With dephosphophosvitin as substrate, the apparent Km for ATP for N1 protein kinase was 0.01 mM. GTP did not replace ATP in this reaction. Protein kinase N2 was active in the presence of ATP or GTP. The apparent Km was 0.01 mM for ATP, but 0.1 mM for GTP.  相似文献   

3.
Nuclear envelopes contain a nucleoside triphosphatase. Hydrolysis of ATP or GTP by this enzyme parallels energy-dependent efflux of poly(A)-containing mRNA from nuclei in vitro. Nucleoside triphosphatase has been purified from highly purified preparations of nuclear envelopes from rat liver by three successive affinity steps. The essentially homogeneous enzyme has an apparent molecular weight of 40,000 as checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and displays a rather broad substrate specificity. ATP and GTP are hydrolyzed at nearly equal rates, whereas UTP and CTP are only half as active as substrates. For optimal activity, a one-to-one ratio of a divalent cation (Mg2+, Mn2+, or Ca2+) and the nucleoside triphosphate substrate, an alkaline pH and a temperature of 34 degrees C are required. In contrast to the enzyme associated with nuclear envelopes which is stimulated by synthetic poly(A) and the poly(A) segment of the natural poly(A)-containing mRNA, homogeneous nucleoside triphosphatase is unable to be modulated by this polynucleotide species.  相似文献   

4.
An enzyme hydrolyzing flavin-adenine dinucleotide (FAD) to flavin mononucleotide and AMP was identified and purified from rat liver lysosomal (Tritosomal) membranes. The purified enzyme showed a single band on silver-stained denaturing gels with an apparent Mr 70,000. Periodate-Schiff staining after denaturing gel electrophoresis of whole membrane preparations revealed that this enzyme is one of the major glycoproteins in lysosomal membranes. FAD appeared to be the preferred substrate for the purified enzyme; equivalent concentrations of NAD or CoA were hydrolyzed at about one-half of the FAD rate. Negligible activity (less than or equal to 16%) was noted with ATP, TTP, ADP, AMP, FMN, pyrophosphate, or p-nitrophenylphosphate. The enzyme was inhibited by EDTA or dithiothreitol. It was stimulated by Zn, and was not affected by Ca or Mg ions, nor by p-chloromercuribenzoate. The pH optimum for FAD hydrolysis was 8.5-9 with an apparent Km of 0.125 mM. Antibodies prepared against the purified enzyme partially (50%) inhibited FAD phosphohydrolase activity in lysosomal membrane preparations but had no effect on the soluble lysosomal acid pyrophosphatase known to hydrolyze FAD. This enzyme could not be detected immunochemically in preparations of microsomes, Golgi, plasma membranes, mitochondrial membranes, or the soluble lysosomal fraction, suggesting that the enzyme is different from either soluble lysosomal acid pyrophosphatase or other FAD hydrolyzing activities in the liver cell.  相似文献   

5.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

6.
Isolated rat liver nuclei were incubated under conditions when RNA polymerase I or RNA polymerase II was preferentially active. It was shown that [gamma-32P] ATP and [gamma-32P] GTP were incorporated into phenol extractable, TCA-precipitable material. RNase, actinomycin D, heparin and, in the case of RNA-polymerase II, alpha-amanitine inhibited precursor incorporation. These data are interpreted as evidence in favour of the initiation of RNA synthesis in isolated rat liver nuclei.  相似文献   

7.
A Sephadex G-25 filtrate of a 100 000g supernatant of rat liver homogenate was shown to be able to phosphorylate fructose, with GTP as the phosphate donor. Attempts to separate ATP- and GTP-dependent fructokinase activities failed, indicating that there is a single enzyme able to use both nucleotides. With a partially purified enzyme, Km values for fructose of 0.83 and 0.56 mM were found with ATP and GTP as substrates respectively. Km values of 1.53 and 1.43 mM were found for GTP and ATP respectively. Both ADP and GDP inhibited the GTP- and ATP-dependent fructokinase activity. We conclude that the depletion of hepatic GTP caused by intravenous administration of fructose to mice and rats can be explained simply by the utilization of the nucleotide by fructokinase.  相似文献   

8.
A polynucleotide kinase, which catalyzes the phosphorylation of 5'-hydroxyl ends of deoxyribonucleic acid in the presence of adenosine triphosphate, has been purified 260-fold with a yield of 14% from 0.15 M NaCl extracts of rat liver nuclei. The purified enzyme has a pH optimum of 5.5. The enzyme is reversible inhibited by p-chloromercuribenzoate. The S0.5 value (ligand concentration required for a half-maximal activity) for ATP is 2.5 muM. A bivalent cation is essential for the reaction and S0.5 values for Mg2+, Ca2+ and Mn2+ are 3.3 mM, 4 mM and 0.05 mM respectively. Pyrophosphate remarkable inhibits the activity with I0.5 value (ligand concentration required for a half-maximal inhibition) of 0.2 mM, and sulfate, with I0.5 of 0.5 mM, whereas phosphate weakly inhibits the activity with I0.5 of about 20 mM. An apparent molecular weight of the purified enzyme is estimated to be 8 X 10(4) by gel filtration on a column of Sephadex G-150, and the Stokes radius of the enzyme molecule is shown to be about 0.36 nm. Sucrose density gradient centrifugation reveals that the enzyme has a sedimentation coefficient of about 4.4 S.  相似文献   

9.
Human liver GTP cyclohydrolase I: purification and some properties   总被引:2,自引:0,他引:2  
R S Shen  A Alam  Y X Zhang 《Biochimie》1989,71(3):343-349
Human liver guanosine triphosphate (GTP) cyclohydrolase I has been purified more than 1,700-fold to what appears to be homogeneity. The active enzyme complex has an estimated molecular weight of 453,000 +/- 11,500 by gel filtration chromatography. It consists of a polypeptide of 149,000 +/- 4,000 mol wt by SDS-polyacrylamide gel electrophoresis. The activity of the enzyme is heat stable and is inhibited by di- and trivalent cations. The enzyme has an optimum pH of 7.7 in sodium phosphate buffer. It uses GTP as a sole substrate, with a Km of 116 microM.  相似文献   

10.
In rat liver mitochondria there exists an AMP-dephosphorylating activity which converts external 5'-AMP to adenosine. It exhibits a pH optimum of 7.5 and a Km(AMP) of 0.085 mM. Furthermore, this activity is stimulated by magnesium (Km = 0.5 mM) and seems to be not affected by low concentrations of ATP or ADP. From the characteristics of the enzyme the existence of a 5'-nucleotidase in rat liver mitochondria which is localized on the outer surface of the inner mitochondrial membrane was concluded. The enzyme may be important for the production of cellular adenosine.  相似文献   

11.
AMP deaminase from normal and diabetic rat hearts was separated on cellulose phosphate and quantitated by HPLC. From soluble fractions three different AMP deaminase activities, according to KCl elution from cellulose phosphate and percent of total activity were: 170 mM (85%), 250 mM (8%) and 330 mM (7%) KCl. The AMP deaminase activity which eluted with 170 mM KCl was resolved to two distinct peaks by HPLC anionic exchange. After 4 weeks of diabetes the heart enzyme profile change to: 170 mM (10%), 250 mM (75%) and 330 mM (15%). Once purified the four activities were kinetically distinct: 170 mM KCl cytosolic, AMP Km = 1.78, stimulated by ATP, GTP, NADP and strongly inhibited by NAD; 170 mM KCl mitochondria AMP Km = 17.9, stimulated by ATP, ADP; 250 mM KCl isozyme, AMP Km = 0.66, stimulated by ADP; and 330 mM KCl isozyme, AMP Km = 0.97, inhibited by ATP, NAD(P).  相似文献   

12.
Previously, we isolated an ATP-dependent proteolytic pathway in muscle, liver, and reticulocytes that requires ubiquitin and the enzymes which conjugate ubiquitin to proteins. We report here that skeletal muscle contains another soluble alkaline energy-dependent (but ubiquitin-independent) proteolytic activity. The cleavage of non-ubiquitinated protein substrates by the partially purified protease requires ATP hydrolysis since ATP in the absence of Mg2+, nonhydrolyzable ATP analogs, and pyrophosphate all fail to stimulate proteolysis. Proteolytic activity is also stimulated by UTP, CTP, and GTP, although not as effectively as by ATP (Km(ATP) = 0.027 mM). The enzyme is inactivated by the serine protease inhibitors diisopropyl fluorophosphate and 3,4-dichloroisocoumarin, but not by specific inhibitors of aspartic, thiol, or metalloproteases. It is maximally active at pH 8 and has a molecular weight of approximately 600,000. This new activity differs from the 720-kDa multicatalytic proteinase, but resembles the soluble ATP-dependent proteolytic system that we previously isolated from murine erythroleukemia cells.  相似文献   

13.
14.
The insulin-sensitive cAMP phosphodiesterase (PDE) from rat adipocytes was stimulated 60-70% upon incubation with 2 mM ATP and the soluble fraction (Fraction S-1) from insulin-treated rat liver. The effect of ATP was partially mimicked by ATP-gamma-S or GTP, but not by AMP-PNP. The PDE-stimulating activity in Fraction S-1 was preserved in the presence of 50 mM sodium phenyl phosphate, 50 mM sodium fluoride, and 0.1 mM sodium vanadate. The PDE-stimulating activity was not inhibited with either 0.5 mM H-7 or 5 microM PKI-(5-24)-peptide, but was blocked with 1 mM Kemptide. The active component in Fraction S-1 may be a phosphorylated compound, which, in the presence of ATP, may mediate the hormonal action on PDE.  相似文献   

15.
Inorganic pyrophosphate and triphosphate inhibit adenylate deaminase from rat skeletal muscle with K1 values of 10 and 1.5 microM, respectively, in the presence of 150 mM KCl at pH 7. They act by reducing the apparent affinity of the enzyme for AMP, with relatively small effects on Vmax. The inhibitions are diminished by H+, the KI values increasing two- to threefold in going from pH 7.0 to 6.2, and are relieved by ADP. These properties are similar to the inhibitions produced by GTP and ATP, indicating that pyrophosphate and triphosphate act like analogues of the nucleoside triphosphates. Neither of these inhibitors shows relief of inhibition at high concentrations as do ATP and GTP. These results suggest that nucleotides interact with the inhibitor site of the enzyme primarily through their phosphate moieties and with the activator site primarily through their nucleoside moieties. As the concentration of KCl is increased from 25 to 300 mM, the apparent affinities of the enzyme for ATP, GTP, orthophosphate, pyrophosphate, and triphosphate are decreased 8-100-fold. The cooperativity of the inhibitions is increased with the Hill coefficient rising from 1.0 to 1.3-1.8, and the maximum inhibition approaches 100%. Maximum activation by ADP is reduced from 1800% at 25 mM KCl to 80% at 200 mM KCl. Experiments with (CH3)4NCl indicate that activation of the enzyme by KCl involves both specific K+ effects and ionic strength effects.  相似文献   

16.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

17.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

18.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [gamma-32P]GTP, low levels of [gamma-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

19.
The rat liver microsomal enzyme CTP: phosphatidate cytidylyltransferase (EC 2.7.7.41) which catalyzes the formation of CDP-diacylglycerol has been found to be markedly stimulated by GTP. The requirement for GTP is absolute, the novel GTP analogues such as guanosine 5′-[β,γ-methylene]-triphosphate, guanosine 5′-[α,β-methylene]-triphosphate, guanosine 5′-[β,γ-imido]-triphosphate and guanosine 3′-diphosphate 5′-diphosphate are without significant effect. Maximal stimulation occurs at 1 mM GTP. ATP at a concentration of 5 mM totally inhibits the formation of CDP-diacylglycerol even in the presence of optimal GTP concentration. Analogues of ATP such as adenosine 5′-[α,β-methylene]-triphosphate, adenosine 5′-[β,γ-methylene]-triphosphate and adenosine 5′-[β,γ-imido]-triphosphate are without effect on the reaction. The addition of fluoride (8 mM) likewise abolishes the stimulatory effect of GTP.  相似文献   

20.
An enzyme that uses GTP as substrate for the formation in stoichiometric quantities of formate, inorganic pyrophosphate, and 2,5-diamino-6-hydroxy-4-(ribosylamino)pyrimidine-5'-phosphate has been purified 2200-fold from extracts of Escherichia coli B. This enzyme is named GTP cyclohydrolase II to distinguish it from a previously studied E. coli enzyme, named GTP cyclohydrolase (and called GTP cyclohydrolase I in this paper), that catalyzes the first of a series of enzymatic reactions leading to the biosynthesis of the pteridine portion of folic acid (Burg, A. W., and Brown, G. M. (1968) J. Biol. Chem. 243, 2349-2358). Some of the properties of GTP cyclohydrolase II are: (a) divalent cations are required for activity (Mg2+ is most effective); (b) its molecular weight, estimated by filtration on Sephadex G-200, is 44,000; (c) the K-m for GTP is 41 mum; (d) its pH optimum is 8.5; and (e) its activity is inhibited by inorganic pyrophosphate, one of the products of the reaction. Compounds not used as substrate are: GDP, GMP, guanosine, dGTP, ATP, ITP, and XTP. Properties a, b, c, and e (above), as well as the nature of the products, distinguish this enzyme from GTP cyclohydrolase I. Since GTP cyclohydrolase II apparently is not concerned with the biosynthesis of folic acid, the possible physiological role of this enzyme in the biosynthesis of riboflavin is considered in the light of the present investigations and the previously published work on riboflavin biosynthesis by other investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号