首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Identifier sequences are transcribed to generate a brain-specific BC-1 RNA present as a ribonucleoprotein particle in the dendrites and somata of neurons. This ribonucleoprotein particle contains an identifier sequence-binding protein (Bp-1 protein). We report here the purification of BC-1 RNA and demonstrate that Bp-1 protein interacts directly with the RNA. We also demonstrate an accumulation of Bp-1 protein in the nucleus of brain cells from mouse fetus and newborns that precedes the postnatal increase in BC-1 RNA. Cytoplasmic Bp-1 protein present in a complex with BC-1 RNA increases postnatally with a concomitant decrease in nuclear Bp-1 protein. These observations suggest that Bp-1 protein may play a role(s) in the synthesis and nuclear export of BC-1 RNA.  相似文献   

2.
A free cytoplasmic 22 S ribonucleoprotein particle exhibiting a major template activity in rabbit reticulocyte system has been identified in the cryptobiotic gastrulae of Artemia salina. This particle contains non-polyadenylated 9 S messenger RNA which codes primarily for a non-histone basic protein with an apparent molecular weight of 26 000 daltons. We have previously demonstrated the presence of a translational inhibitor RNA which is apparently responsible for transforming polyadenylated messenger (Slegers et al., FEBS Letters 80, 390-394, 1977). This inhibitor RNA was found to be completely ineffective on the template activity of non-polyadenylated 22 S messenger ribonucleoprotein, confirming the specificity of this regulatory RNA for polyadenylate sequences.  相似文献   

3.
4.
Rapidly labelled, polyadenylated RNA is contained in three distinct fractions isolated from homogenized amphibian oocytes: (a) in ribonucleoprotein particles that are associated with a fibrillar matrix, the complexes sedimenting at greater than 1500S; (b) in ribonucleoprotein particles that sediment at 20-120S and have the characteristics of stored (maternal) messenger ribonucleoprotein (mRNP) and (c) in polyribosomes that sediment at 120-360S. We have compared the RNA and protein components of the first two of these RNP fractions. The polyadenylated RNA extracted from the two RNP fractions differs in that the RNA from fibril-associated RNP contains a much higher content of repeat sequences than does the RNA from mRNP. In other words, the RNA from fibril-associated RNP is largely unprocessed and may constitute a premessenger state, which for convenience is referred to as premessenger RNP (pre-mRNP). RNA-binding experiments demonstrate that the polypeptide most tightly bound in pre-mRNP is a 54-kDa component (p54), whereas the polypeptide most tightly bound in mRNP is a 60-kDa component (p60). Antibodies raised against p60 are used to show that this polypeptide is a common major component of pre-mRNP and mRNP and that it is also located in oocyte nuclei. However the state of p60 is modified between the premessenger and stored message levels: the polypeptide in mRNP is heavily phosphorylated whereas the equivalent polypeptide in pre-mRNP is completely unphosphorylated. The relative roles of the presence of repeat sequences and phosphorylation of mRNA-associated protein in blocking translation are discussed.  相似文献   

5.
The LINE-1 repeat family is interspersed throughout mammalian genomes and is thought to be the result of duplicative transposition of LINE-1 sequences via an RNA intermediate. This report describes a ribonucleoprotein particle with LINE-1 RNA in the mouse embryonal carcinoma cell line F9. This ribonucleoprotein particle is a potential intermediate in the transposition of LINE-1 in the mouse genome.  相似文献   

6.
We have previously reported an anti-fibronectin monoclonal antibody (mAb) (BC-1) which reacts with an ED-B-containing beta-galactosidase-fibronectin fusion protein but not with an identical beta-galactosidase-fibronectin fusion protein in which the ED-B sequence is omitted. In further experiments aimed at localizing more precisely the epitope recognized by this mAb, we demonstrate that 1) the mAb BC-1 is indeed specific for ED-B-containing fibronectin (FN) molecules even though the epitope recognized by this mAb is localized on the type III homology repeat 7 (the one which precedes the ED-B sequence) and 2) in fibronectin molecules lacking the ED-B sequence, this epitope is masked. We further demonstrate that, to mask the epitope recognized by the mAb BC-1, the presence of at least half of the FN type III homology repeat 9 is necessary. We also report the production of the mAb IST-6 which recognizes only FN molecules in which the ED-B sequence is lacking. These data clearly demonstrate that the presence of the ED-B sequence within FN molecules generates conformational modification in the central part of the molecules that unmasks previously cryptic sequences and masks others.  相似文献   

7.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

8.
9.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

10.
When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.  相似文献   

11.
In animals, replication-dependent histone genes are expressed in dividing somatic cells during S phase to maintain chromatin condensation. Histone mRNA 3'-end formation is an essential regulatory step producing an mRNA with a hairpin structure at the 3'-end. This requires the interaction of the U7 small nuclear ribonucleoprotein particle (snRNP) with a purine-rich spacer element and of the hairpin-binding protein with the hairpin element, respectively, in the 3'-untranslated region of histone RNA. Here, we demonstrate that bona fide histone RNA 3' processing takes place in Xenopus egg extracts in a reaction dependent on the addition of synthetic U7 RNA that is assembled into a ribonucleoprotein particle by protein components available in the extract. In addition to reconstituted U7 snRNP, Xenopus hairpin-binding protein SLBP1 is necessary for efficient processing. Histone RNA 3' processing is not affected by addition of non-destructible cyclin B, which drives the egg extract into M phase, but SLBP1 is phosphorylated in this extract. SPH-1, the Xenopus homologue of human p80-coilin found in coiled bodies, is associated with U7 snRNPs. However, this does not depend on the U7 RNA being able to process histone RNA and also occurs with U1 snRNPs; therefore, association of SPH1 cannot be considered as a hallmark of a functional U7 snRNP.  相似文献   

12.
Vaults are highly conserved ubiquitous ribonucleoprotein particles with an undefined function. Three protein species (p240/TEP1, p193/VPARP, and p100/MVP) and a small RNA comprise the 13-MDa vault particle. The expression of the unique 100-kDa major vault protein is sufficient to form the basic vault structure. Previously, we have shown that stable association of the vault RNA with the vault particle is dependent on its interaction with the p240/TEP1 protein. To identify other proteins that interact with the vault RNA, we used a UV-cross-linking assay. We find that a portion of the vault RNA is complexed with the La autoantigen in a separate smaller ribonucleoprotein particle. La interacts with the vault RNA (both in vivo and in vitro) presumably through binding to 3'-uridylates. Moreover, we also demonstrate that the La autoantigen is the 50-kDa protein that we have previously reported as a protein that co-purifies with vaults.  相似文献   

13.
Ribonucleoprotein particle appearing during sporulation in yeast.   总被引:2,自引:2,他引:0       下载免费PDF全文
During sporulation of Saccharomyces cerevisiae, most strains accumulate an unmethylated 20S RNA. Contrary to previous reports, this sporulation 20S RNA is distinct from the short-lived methylated 20S RNA precursor of 18S rRNA. This RNA species was found in a cytoplasmic 32S ribonucleoprotein particle consisting of one single-stranded 20S RNA molecule and 18 to 20 identical protein subunits of molecular weight 23,000. The ribonucleoprotein particle was resistant to ribonuclease digestion, although purified 20S RNA was ribonuclease sensitive. Both the RNA and the protein of the 32S ribonucleoprotein particle were only synthesized under conditions that induce sporulation. The accumulation of 20S RNA depended on continued protein synthesis but was actinomycin D insensitive, despite a high guanine-plus-cytosine content. Synthesis of 20S RNA stopped when cells were removed from sporulation conditions and placed in growth medium.  相似文献   

14.
We have isolated a nobel antibody from a patient with autoimmune disease which reacts with the ribonucleoprotein complex containing 7.5S RNA. The 7.5S RNA consists of two species having slightly different electrophoretic mobilities. Fingerprinting analysis of these two species demonstrates that nucleotide sequences of the RNAs are very similar to each other. Nucleotide composition of the 7.5S RNA is found to be; A/U/G/C=20/18/32/30, indicating that the ratio of GC content of the RNA(62%) is relatively high. The RNA contains a pseudouridylic acid residue as a modified nucleotide. Immunofluorescence pattern stained with the antibody suggests that the ribonucleoprotein complex containing 7.5S RNA is located both in the nucleolus and the cytoplasm.  相似文献   

15.
16.
17.
Signal recognition particle (SRP), the cytoplasmic ribonucleoprotein particle that mediates the targeting of proteins to the ER, consists of a 7S RNA and six different proteins. The 68- (SRP68) and 72- (SRP72) kD proteins of SRP are bound to the 7S RNA of SRP as a heterodimeric complex (SRP68/72). Here we describe the primary structure of SRP72 and the assembly of SRP68, SRP72 and 7S RNA into a ribonucleoprotein particle. The amino acid sequence deduced from the cDNA of SRP72 reveals a basic protein of 671 amino acids which shares no sequence similarity with any protein in the sequence data libraries. Assembly of SRP72 into a ribonucleoprotein particle required the presence of 7S RNA and SRP68. In contrast, SRP68 alone specifically bound to 7S RNA. SRP68 contacts the 7S RNA via its NH2-terminal half while COOH-terminal portions of SRP68 and SRP72 are in contact with each other in SRP. SRP68 thus serves as a link between 7S RNA and SRP72. As a large NH2- terminal domain of SRP72 is exposed on SRP it may be a site of contact to other molecules involved in the SRP cycle between the ribosome and the ER membrane.  相似文献   

18.
《The Journal of cell biology》1990,111(5):1793-1802
Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499- 516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH- terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.  相似文献   

19.
Binding sites of rat liver 5S RNA to ribosomal protein L5   总被引:2,自引:0,他引:2  
The ribonucleoprotein complex consisting of 5S RNA and the protein L5 was prepared from the large subunit of rat liver ribosomes. The RNA in the complex was digested in situ with RNase A or RNase T1. The RNase-resistant RNA fragments bound to the protein were recovered and purified by 2D-PAGE, and their nucleotide sequences were determined in order to elucidate the binding sites of the RNA to the protein. The results showed that the fragments had arisen from the 5'-end region (residues 1-21), from the second hairpin loop (residues 77-102) and from the 3'-end region (residues 106-120). Harsher digestion trimmed these fragments to shorter fragments. It was concluded that the minimal interactive sequences of 5S RNA to the protein L5 were residues 13-21, residues 85-102, and residues 106-114. A part of the first hairpin loop, residues 41-52, was also suspected to interact with the protein. These protein-binding sites of rat liver 5S RNA were compared with those of Escherichia coli, Halobacterium cutirubrum and yeast, and their probable conservation from eubacteria to eukaryotes is discussed.  相似文献   

20.
F Harada  Y Takeuchi    N Kato 《Nucleic acids research》1986,14(4):1629-1642
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号