首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently two developments have had a major impact on the field of ancient DNA (aDNA). First, new advances in DNA sequencing, in combination with improved capture/enrichment methods, have resulted in the recovery of orders of magnitude more DNA sequence data from ancient animals. Second, there has been an increase in the range of tissue types employed in aDNA. Hair in particular has proven to be very successful as a source of DNA because of its low levels of contamination and high level of ancient endogenous DNA. These developments have resulted in significant advances in our understanding of recently extinct animals: namely their evolutionary relationships, physiology, and even behaviour. Hair has been used to recover the first complete ancient nuclear genome, that of the extinct woolly mammoth, which then facilitated the expression and functional analysis of haemoglobins. Finally, we speculate on the consequences of these developments for the possibility of recreating extinct animals.  相似文献   

2.
Ancient genomics     
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.  相似文献   

3.
The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.  相似文献   

4.
In the 25 years since the first DNA sequences were obtained from the extinct moa, ancient DNA analyses have significantly advanced our understanding of New Zealand's unique fauna. Here, we review how DNA extracted from ancient faunal remains has provided new insights into the evolutionary histories and phylogenetic relationships of New Zealand animals, and the impacts of human activities upon their populations. Moreover, we review how ancient DNA has played a key role in improving our ability to taxonomically identify fragmentary animal remains, determine biological function within extinct species, reconstruct past faunas and communities based on DNA preserved in sediments, resolve aspects of the ecology of extinct animals and characterising prehistoric parasite faunas. As ancient DNA analyses continue to become increasingly applied, and sequencing technologies continue to improve, the next 25 years promises to provide many more exciting new insights and discoveries about New Zealand's unique fauna.  相似文献   

5.
Authentication of ancient human DNA results is an exceedingly difficult challenge due to the presence of modern contaminant DNA sequences. Nevertheless, the field of ancient human genetics generates huge scientific and public interest, and thus researchers are rarely discouraged by problems concerning the authenticity of such data. Although several methods have been developed to the purpose of authenticating ancient DNA (aDNA) results, while they are useful in faunal research, most of the methods have proven complicated to apply to ancient human DNA. Here, we investigate in detail the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing so, we also produce data that describes the efficiency of bleach incubation of bone powder and its relative detrimental effects on contaminant and authentic ancient DNA. We note that bleach treatment is significantly more detrimental to contaminant than to authentic aDNA in the bleached bone powder. Furthermore, we find that there is a substantial increase in the relative proportions of authentic DNA to contaminant DNA as the PCR target fragment size is decreased. We therefore conclude that the degradation pattern in aDNA provides a quantifiable difference between authentic aDNA and modern contamination. This asymmetrical behavior of authentic and contaminant DNA can be used to identify authentic haplotypes in human aDNA studies.  相似文献   

6.
Innovations in ancient DNA (aDNA) preparation and sequencing technologies have exponentially increased the quality and quantity of aDNA data extracted from ancient biological materials. The additional temporal component from the incoming aDNA data can provide improved power to address fundamental evolutionary questions like characterizing selection processes that shape the phenotypes and genotypes of contemporary populations or species. However, utilizing aDNA to study past selection processes still involves considerable hurdles like how to eliminate the confounding factor of genetic interactions in the inference of selection. To address this issue, we extend the approach of He et al., 2023 to infer temporally variable selection from the aDNA data in the form of genotype likelihoods with the flexibility of modelling linkage and epistasis in this work. Our posterior computation is carried out by a robust adaptive version of the particle marginal Metropolis-Hastings algorithm with a coerced acceptance rate. Our extension inherits the desirable features of He et al., 2023 such as modelling sample uncertainty resulting from the damage and fragmentation of aDNA molecules and reconstructing underlying gamete frequency trajectories of the population. We evaluate its performance through extensive simulations and show its utility with an application to the aDNA data from pigmentation loci in horses.  相似文献   

7.
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field.  相似文献   

8.
Fossil rodent middens are powerful tools in paleoecology. In arid parts of western North America, packrat (Neotoma spp.) middens preserve plant and animal remains for tens of thousands of years. Midden contents are so well preserved that fragments of endogenous ancient DNA (aDNA) can be extracted and analyzed across millennia. Here, we explore the use of shotgun metagenomics to study the aDNA obtained from packrat middens up to 32,000 C14 years old. Eleven Illumina HiSeq 2500 libraries were successfully sequenced, and between 0.11% and 6.7% of reads were classified using Centrifuge against the NCBI “nt” database. Eukaryotic taxa identified belonged primarily to vascular plants with smaller proportions mapping to ascomycete fungi, arthropods, chordates, and nematodes. Plant taxonomic diversity in the middens is shown to change through time and tracks changes in assemblages determined by morphological examination of the plant remains. Amplicon sequencing of ITS2 and rbcL provided minimal data for some middens, but failed at amplifying the highly fragmented DNA present in others. With repeated sampling and deep sequencing, analysis of packrat midden aDNA from well‐preserved midden material can provide highly detailed characterizations of past communities of plants, animals, bacteria, and fungi present as trace DNA fossils. The prospects for gaining more paleoecological insights from aDNA for rodent middens will continue to improve with optimization of laboratory methods, decreasing sequencing costs, and increasing computational power.  相似文献   

9.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

10.
Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution.  相似文献   

11.
Identifying the causes of past epidemics depends on the specific detection of pathogens in buried individuals; this field of research is known as paleomicrobiology, an emerging field that has benefited from technological advances in microbiology. For almost 15 years, the detection, identification, and characterization of microbes in ancient environmental and human specimens emerged on the basis of ancient DNA (aDNA) analyses. aDNA limitations due to potential contamination by modern DNA and altered aDNA led to the development of alternative methods for the detection and characterization of nonnucleotidic biomolecules, including mycolic acids (of ancient mycobacteria) and proteins. Accordingly, immunohistochemistry, immunochromatography, and enzyme-linked immunosorbent assay techniques have been developed for the specific detection of microbes from ancient human and environmental specimens. Protein analysis by mass spectrometry, a standard for ancient animal identification, has also recently emerged as a technique for ancient mycobacteria detection, while immuno-PCR is yet another promising technique. As with aDNA, strict protocols must be enforced to ensure authenticity of the data. Here we review the analysis of nonnucleotidic biomolecules from ancient microbes and the ability of these analyses to complement aDNA analyses, which opens new opportunities for identification of ancient microbes as well as new avenues to potentially resolve controversies regarding the cause of some historical pandemics and study the coevolution of microbes and hosts.  相似文献   

12.
古DNA是指从已经死亡的古代生物的遗体和遗迹中得到的DNA。本文回顾了近20年古DNA研究所经历的3个阶段, 从早期参与研究的科学家较少并主要利用克隆技术, 到后来由于PCR技术的出现以及提取化石DNA技术的成熟从而出现大量有关古DNA的报道; 近几年由于发现不少问题, 并引起激烈的争论, 科学家们因此而开始考虑古DNA的真实性问题, 并且提出了开展古DNA研究的严格标准。本文还讨论了古DNA在人类起源、系统发育重建、动植物驯化及考古研究中的重要意义以及现状, 表明古DNA的研究给某些原先的观点如人类的非洲起源说提供了重要证据, 也对某些观点提出了挑战; 古DNA研究还提供了某些已经灭绝生物的形态学和分子资料, 为从序列上确定古代材料的系统位置并有效地补充仅用现代DNA建立起来的谱系提供了来自古生物的依据。在动植物驯化及考古方面, 古DNA证据也为科学家提供了许多有价值的信息。最后, 本文还对古DNA研究的应用前景进行了展望。  相似文献   

13.
古DNA及其在生物系统与进化研究中的应用   总被引:2,自引:0,他引:2  
古DNA是指从已经死亡的古代生物的遗体和遗迹中得到的DNA.本文回顾了近20年古DNA研究所经历的3个阶段,从早期参与研究的科学家较少并主要利用克隆技术,到后来由于PCR技术的出现以及提取化石DNA技术的成熟从而出现大量有关古DNA的报道;近几年由于发现不少问题,并引起激烈的争论,科学家们因此而开始考虑古DNA的真实性问题,并且提出了开展古DNA研究的严格标准.本文还讨论了古DNA在人类起源、系统发育重建、动植物驯化及考古研究中的重要意义以及现状,表明古DNA的研究给某些原先的观点如人类的非洲起源说提供了重要证据,也对某些观点提出了挑战;古DNA研究还提供了某些已经灭绝生物的形态学和分子资料,为从序列上确定古代材料的系统位置并有效地补充仅用现代DNA建立起来的谱系提供了来自古生物的依据.在动植物驯化及考古方面,古DNA证据也为科学家提供了许多有价值的信息.最后,本文还对古DNA研究的应用前景进行了展望.  相似文献   

14.
Ancient DNA   总被引:2,自引:0,他引:2  
In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets.  相似文献   

15.
The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologists the opportunity to analyse ancient DNA (aDNA) together with modern DNA (mDNA) to address the taxonomy of extinct species, evolutionary origins, historical phylogeography and biogeography. Perhaps more exciting are recent developments in coalescence-based Bayesian inference that offer the potential to use temporal information from aDNA and mDNA for the estimation of substitution rates and divergence dates as an alternative to fossil and geological calibration. This comes at a time of growing interest in the possibility of time dependency for molecular rate estimates. In this study, we provide a critical assessment of Bayesian Markov chain Monte Carlo (MCMC) analysis for the estimation of substitution rate using simulated samples of aDNA and mDNA. We conclude that the current models and priors employed in Bayesian MCMC analysis of heterochronous mtDNA are susceptible to an upward bias in the estimation of substitution rates because of model misspecification when the data come from populations with less than simple demographic histories, including sudden short-lived population bottlenecks or pronounced population structure. However, when model misspecification is only mild, then the 95% highest posterior density intervals provide adequate frequentist coverage of the true rates.  相似文献   

16.
Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high‐throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non‐fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro‐eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non‐fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.  相似文献   

17.
The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR) inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.  相似文献   

18.
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.  相似文献   

19.
A novel method of ancient DNA (aDNA) purification was developed using ion-exchange columns to improve PCR-amplifiable DNA extraction from ancient bone samples. Thirteen PCR-resistant ancient bone samples aged 500-3,300 years were tested to extract aDNA using a recently reported, silica-based aDNA extraction method and an ion-exchange column method for the further purification. The PCR success rates of the aDNA extracts were evaluated for the amplification ability of the fragments of mitochondrial DNA, a high-copy DNA, and amelogenin, a low-copy DNA. The results demonstrate that the further purification of silica-based aDNA extracts using ion-exchange columns considerably improved PCR amplification. We suggest that the ion-exchange column-based method will be useful for the improvement of PCR-amplifiable aDNA extraction, particularly from the poorly preserved, PCR-resistant, ancient samples.  相似文献   

20.
In this study, a quantitative PCR (qPCR) method was applied to amplify ancient DNA (aDNA) of different methane-oxidizing bacteria (MOB) types in lake sediments and to reconstruct microbial community dynamics over the last 1200?years. We also used reconstructions of in-lake nutrients concentrations, air temperature fluctuations, and sedimentary organic matter dynamics to study impacts of past environmental and climatic changes on MOB community composition. DNA preservation in lake sediments is sufficient, and qPCR amplification was successfully applied to the analysis of MOB aDNA. Temporal changes in MOB community showed different patterns between lakes, and drivers of past MOB dynamics slightly differed between lakes and among MOB groups. Overall, MOB developments were generally correlated to proxies of organic matter quality/quantity and climate data. Moreover, our results could emphasize the importance of nutrients availability in structuring MOB community, and the higher ability of MOB type 2 to access nutrients under nitrogen/nutrients limited conditions. Therefore, our study provides an operational and time-effective method to reconstruct past CH4 oxidation in lakes and could help to identify the driving factors of past temporal dynamics of MOB community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号