首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Close coorelation of atomic absorption measurements for Ca(II) contents indicates that from pH 5.8-7.4 a twentyfold excess of EGTA1 removes but one of two Ca(II) from carp parvalbumin. Thus binding of the two Ca(II) appears to be noncooperative. The maximum in emission intensity observed at a nonintegral 1.4-1.7 equivs of added Tb(III) is shown to be due to quenching by excess Tb(III). The emission intensity at the maximum increased 40% upon dialysis to remove Tb(III) not bound in the CD or EF sites. Atomic absorption results show that both Ca(CD) and Ca(EF) of native parvalbumin are easily replaced by Tb(III). Emission of Tb(EF) is not quenched by Tb(CD), but by solution Tb(III) bound at a third site, perhaps the single water molecule bound to Tb(EF). Labeling of the single sulfhydryl group with a trifluoroacetonyl gorup yields a protein with ultraviolet circular dichroism, emission, and circularly polarized emission spectra closely similar to those of native parvalbumin.  相似文献   

2.
Oncomodulin, the parvalbumin-like calcium-binding protein frequently expressed in tumor tissue, was isolated from Morris hepatoma 5123tc and studied using the luminescent lanthanide ions, Eu3+ and Tb3+. Titrations of the apoprotein - whether monitored by indirect excitation of bound Tb3+, by direct laser excitation of bound Eu3+, or by quenching of the intrinsic tyrosine fluorescence - all indicated the presence of two high-affinity binding sites for lanthanide ions, as in parvalbumin. Moreover, the appearance of the Eu3+ 7F0----5D0 excitation spectrum of Eu2-oncomodulin was found to be highly pH-dependent, as previously observed with parvalbumin. At pH 5.0, it consists of a single peak centered at 5796 A, having a linewidth of approximately 6 A. At higher pH values, this spectrum is replaced by a broader, more symmetric peak at 5782 A. Oncomodulin, however, was found to differ from parvalbumin in at least one important respect: In contrast to the muscle-associated protein, the affinities of the CD site in oncomodulation for Tb3+ and Ca2+ were found to be rather similar, with KCa/KTb approximately equal to 11 +/- 2.  相似文献   

3.
Upon substitution of Tb(III) for the most easily replaced Ca(II) from bovine cardiac TN-C, irradiation at 280 nm produces an emission at 545 nm from Tb(III) that is partially circularly polarized. Characteristics of these emission spectra produced by energy transfer from a tyrosyl side chain to a juxtaposed Tb(III) are virtually identical to those found in rabbit skeletal muscle TN-C and carp parvalbumin. A single homologous tyrosyl residue occurs in the two troponins and is in turn homologous to a phenylalanyl residue in parvalbumins. Addition of the other troponin subunits, TN-I and TN-T, to Tb(III)-TN-C weakens the total emission and completely quenches the circularly polarized emission.  相似文献   

4.
An investigation of Ca2+-binding centers of calmodulin was carried out by EXAFS-spectroscopy. The experimental results for protein preparations of calmodulin in which Ca2+ was isomorphically replaced by Tb3+ were obtained by a spectrometer working at the Institute of Nuclear Physics. For spectra analyses a standard method of Fourier transformation was used. Coincidence main maxima on phi (r) curves and identity of Fourier transformation for calmodulin and parvalbumin in the 2-6 A interval allow to infer the identity of Ca2+-binding centers of calmodulin and parvalbumin.  相似文献   

5.
A novel calcium-binding protein has been isolated from chicken thymus tissue. Its molecular weight (approximately 11,500) and characteristic interactions with Tb3+ and Eu3+ identify the protein as a member of the parvalbumin family. Electrophoretically distinct from both chicken (muscle) parvalbumin and avian thymic hormone, it represents the third parvalbumin to be identified in avian tissues and the second to be identified in the avian thymus gland.  相似文献   

6.
113Cd-n.m.r. studies were used to investigate the binding of the lanthanide ions La3+, Gd3+, Tb3+, Yb3+ and Lu3+ to parvalbumins. It was shown that lanthanide ions with a smaller ionic radius bind sequentially to Cd2+-saturated parvalbumin, whereas those with a larger ionic radius bind with similar affinity to both the CD site and the EF site. The smallest ion, Lu3+, does in fact not compete significantly with Cd2+ for the CD site in carp parvalbumin, but appears to bind only to the EF site. This preference of the smaller lanthanide ions for the EF site was used to assign the n.m.r. signals for protein-bound 113Cd. By using Cd n.m.r. and Tb3+ fluorescence it was also shown for alpha-lineage parvalbumin from pike that these proteins possess a third site that can bind lanthanide ions. This site is, however, much weaker than in the beta-lineage parvalbumins. It was used to assign the 113Cd resonances from protein-bound Cd2+ ions in the spectrum of pike pI5.0 parvalbumin.  相似文献   

7.
Fluorimetric titrations of parvalbumin II (pI 4.2) of pike (Pike II) with Ca2+ and Tb3+ show the CD and EF binding sites to be non-equivalent. The intrinsic binding constants of the strong and the weak sites obtained for Ca2+ are: KsCa = 1.6.10(8) M-1; KwCa = 6.6.10(5) M-1. Differences of the order of 100% were encountered between the Tb3+ binding constants obtained with four different versions of titration. Their average values are: KsTb = 1.9.10(11) M-1; KwTb = 1.0.10(7) M-1. The distances of the strong and the weak sites from the singular Tyr-48, rs = 9.5 A and r2 = 11.5 A, were derived from F?rster-type energy transfer and proved compatible with the X-ray structure of parvalbumin III (pI 4.2) of carp (CarpIII). From the distances, it is suggested that CD is the strong and EF the weak metal-binding site of PikeII. Tb3+ was shown by CD spectroscopy to have the same structural effect on PikeII as Ca2+. Removal of the metal ions from PikeII results in a decrease of helix content as monitored by CD spectroscopy. This decrease is larger than that in CarpIII. A concomitant decrease of the fluorescence quantum yield at nearly constant decay time is indicative of mainly static quenching, probably by the non-coordinating carboxylate groups. The maximum helix content is almost completely reestablished upon binding of the first metal ion. However, small changes of the energy transfer in PikeII with one terbium ion bound to the strong site indicate fine structural rearrangements of the strong binding site when Ca2+ is bound to the weak one.  相似文献   

8.
Cod parvalbumin, a calcium-binding protein, possesses a specific Zn2+ (or Cu2+) binding site per molecule. This work employed fluorescence energy transfer techniques to measure the distance between the Zn2+ (Cu2+) site and the stronger Ca(2+)-binding site in parvalbumin. Specifically, the distance between Tb3+ bound at the Ca2+ site and Co2+ bound to the Zn2+ (Cu2+) binding site was 10.3 +/- 0.9 A. Lastly, the effects of Cu2+ on the physico-chemical properties of parvalbumin were studied by measuring the accessibility of protein thiol groups to 5,5'-dithio bis(2-nitrobenzoic acid) and by its affinity for the fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulfonic acid] dipotassium salt. The thiol group accessibility decreased and the affinity to the fluorescent probe increased upon complexation of Cu2+ to the protein. It appears that the binding of Cu2+ converts parvalbumin to an apo-like state.  相似文献   

9.
Luminescence methods were used to examine the interaction of Eu(III) and Tb(III) with parvalbumin isozyme III from pike (Esox lucius). The bound lanthanide ions were excited both directly, via laser irradiation, and indirectly, via fluorescence energy transfer from adjacent phenylalanine residues. At high (175 microM) protein concentrations, the lanthanide titration curves exhibited pronounced quenching of luminescence at Ln3+:parvalbumin ratios above 2:1, in agreement with earlier reports (Donato, H., Jr., and Martin, R. B. (1974) Biochemistry 13, 4575-4579). However, in experiments performed with lower concentrations (10 microM), the titrations were well behaved and indicated a lanthanide:protein stoichiometry of 2:1. Equilibrium dialysis measurements performed with Eu(III) ruled out the existence of a third strong binding site which could cause the quenching of the luminescence at high protein concentrations. Similarly, careful analysis of the spectrum that results from direct excitation of the 7F0----5D0 transition of parvalbumin-bound Eu3+ ion revealed no peak attributable to a third Ln3+-binding site. The peak which has been construed by others (Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., Jr. (1981) Biochemistry 20, 3328-3334) as evidence for a third site was shown to result from a pH-dependent spectral transition involving the europium ions bound at the CD and EF sites. Luminescent lifetime measurements performed on Tb(III)/parvalbumin solutions follow Stern-Volmer quenching kinetics at terbium:protein ratios in excess of 2:1, suggesting that the quenching results from collisional deactivation of the tightly bound ions by excess terbium ion free in solution.  相似文献   

10.
The luminescent isomorphous Ca2+ analogue, Tb3+, can be bound in the 12-amino acid metal binding sites of proteins of the EF hand family, and its luminescence can be enhanced by energy transfer from a nearby aromatic amino acid. Tb3+ can be used as a sensitive luminescent probe of the structure and function of these proteins. The effect of changing the molecular environment around Tb3+ on its luminescence was studied using native Cod III parvalbumin and site-directed mutants of both oncomodulin and calmodulin. Titrations of these proteins showed stoichiometries of fill corresponding to the number of Ca2+ binding loops present. Tryptophan in binding loop position 7 best enhanced Tb3+ luminescence in the oncomodulin mutant Y57W, as well as VU-9 (F99W) and VU-32 (T26W) calmodulin. Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan. Spectra also revealed conformational differences between the Ca2+- and Tb(3+)-bound forms. An alternate binding loop, based on Tb3+ binding to model peptides, was inserted into the CD loop of oncomodulin by cassette mutagenesis. The order of fill of Tb3+ in this protein reversed, with the mutated loop binding Tb3+ first. This indicates a much higher affinity for the consensus-based mutant loop. The mutant loop inserted into oncomodulin had 32 times more Tb3+ luminescence than the identical synthetic peptide, despite having the same donor tryptophan and metal binding ligands. In this paper, a ranking of sensitivity of luminescence of bound Tb3+ is made among this subset of calcium binding proteins. This ranking is interpreted in light of the structural differences affecting Tb3+ luminescence enhancement intensity. The mechanism of energy transfer from an aromatic amino acid to Tb3+ is consistent with a short-range process involving the donor triplet state as described by Dexter (Dexter, D. L. (1953) J. Chem. Phys. 21, 836). This cautions against the use of the F?rster equation in approximating distances in these systems.  相似文献   

11.
N Coruh  J P Riehl 《Biochemistry》1992,31(34):7970-7976
A number of different experimental techniques have been used to probe the details of structural changes on the binding of Ca(II) to the large number of known calcium-binding proteins. The use of luminescent lanthanide(III) ions, especially terbium(III) and europium(III), as substitutional replacement for calcium(II), has led to a number of useful experiments from which important details concerning the metal ion coordination sites have been obtained. This work is concerned with the measurement of the circularly polarized luminescence (CPL) from the 5D4----7F5 transition of Tb(III) bound to the calcium binding sites of bovine trypsin, bovine brain calmodulin, and frog muscle parvalbumin. It is demonstrated that it is possible to make these polarization measurements from very dilute solutions (less than 20 microM) and monitor structural changes as equivalents of Tb(III) are added. It is shown that the two proteins that belong to the class of "EF-hand" structures (calmodulin and parvalbumin) possess quite similar CPL line shapes, whereas Tb(III) bound to trypsin has a much different band structure. CPL results following competitive and consecutive binding of Ca(II) and Tb(III) bound to calmodulin are also reported and yield information concerning known differences between the sequence of binding of these two species.  相似文献   

12.
Calcium is required for effective fibrin polymerization. The high affinity Ca2+ binding capacity of fibrinogen was directly localized to the gamma-chain by autoradiography of nitrocellulose membrane blots of fibrinogen subunits incubated with 45Ca2+. Terbium (Tb3+) competitively inhibited 45Ca2+ binding to fibrinogen during equilibrium dialysis, accelerated fibrin polymerization, and limited fibrinogen fragment D digestion by plasmin. The intrinsic fluorescence of Ca2+-depleted fibrinogen was maximally enhanced by Ca2+ and Tb3+, but not by Mg2+, at about 3 mol of cation/mol of fibrinogen. Protein-bound Tb3+ fluorescence at 545 nm was maximally enhanced by resonance energy transfer from tryptophan (excitation at 290 nm) at about 2 mol of Tb3+mol of fibrinogen and about 1 mol of Tb3+/mol of plasmic fragment D94 (Mr 94,000). Fibrinogen fragments D78 (Mr 78,000) and E did not show effective enhancement of Tb3+ fluorescence, suggesting that the Ca2+ site is located within gamma 303 to gamma 411, the peptide which is absent in fragment D78 but present in D94. When CNBr fragments of the carboxyamidated gamma-subunit were assayed for enhancement of Tb3+ fluorescence, peptide CBi (gamma 311-336) bound 1 mol of Tb3+/mol of CBi. Thus, the Ca2+ site is located within this peptide. The sequence between gamma 315 and gamma 329 is homologous to the calmodulin and parvalbumin Ca2+ binding sites.  相似文献   

13.
An investigation of Ca2+-binding centers of parvalbumin II and III by analysing distant fine structure of X-ray absorption spectra of metal was performed. Protein preparations of parvalbumin II and III in which Ca2+ was isomorphically replaced by Tb3+ were studied. For spectra analyses a standard method of Fourier transformation was used. The middle of the first absorption maximum was taken as origin for energy calculations. Comparison of spectra and modules of Fourier transformations for normalized oscillations of the X-ray spectra of absorption of the II and III components, revealed that the spectra and Fourier-transformants coincide in the 2--6 A interval. This allows to infer the coincidence of the coordinate numbers, average interatomic distances and their dispersions in Ca2+-binding centers of the two protein components.  相似文献   

14.
The rates of dissociation of 2 equiv of various metal ions [Ca(II), Cd(II), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III)] from the primary CD and EF metal ion binding sites of parvalbumin (isotype pI = 4.75) from codfish (Gadus callarius L) were measured by stopped-flow techniques. The removal or replacement of metal ions was monitored by changes in sensitized Tb(III) luminescence or in intrinsic protein tryptophan fluorescence as quenching ions [Eu(III) or Yb(III)] were bound or removed or as the apoprotein was formed. In experiments wherein the bound metal ions were removed by mixing the parvalbumin with an excess of 1,2-diaminocyclohexanetetraacetic acid (DCTA), the kinetic traces were best fit by a double exponential with koff rate constants of 1.07 and 5.91 s-1 for Ca(II), 1.54 and 10.5 s-1 for Cd(II), and approximately 0.05 and approximately 0.5 s-1 for all of the trivalent lanthanide ions. In experiments wherein the bound metal ions were exchanged with an excess of a different metal ion, pseudo-first-order rate constants were proportional to the concentration of excess attacking metal ion for both the fast and slow processes in most experiments. In these cases, extrapolation of the rate constants to zero concentration of attacking metal ion gave values which agree well with the DCTA scavenging results. This finding demonstrates that the off rate constants do not depend on the occupancy of the neighboring site and therefore implies that there is no significant cooperativity in metal ion binding between the two sites in parvalbumin.  相似文献   

15.
16.
The luminescence of Tb(III) was used to explore the topography of the metal ion sites of Escherichia coli glutamine synthetase and the relationship between these sites and tryptophan residues of the enzyme. By irradiation of tryptophan residues at 295 nm and measurement of the resulting Tb(III) luminescence at 544 nm, a biphasic curve was obtained upon titrating apoenzyme with Tb(III) indicating sequential binding of Tb(III) ions to the two binding sites of glutamine synthetase. The luminescence intensity was greater in the second region of the titration curve which is mostly due to energy transfer from Trp-158 to the second Tb(III) binding site of the enzyme. By use of the F?rster equation for energy transfer from donor Trp to acceptor Tb(III), distances from Trp-57 to Tb(III) at the n1 and n2 sites were calculated, by using a mutant enzyme in which Trp-158 was replaced by Ser, to be 16.4 and 15.7 A, respectively; distances from Trp-158 to Tb(III) at the n1 and n2 sites were calculated, by using a mutant enzyme in which Trp-57 was replaced by Leu, to be 16.8 and 9.5 A, respectively. All the distances are in reasonably good agreement with the crystal structure distances from Salmonella typhimurium glutamine synthetase except the distance from Trp-158 to the second Tb(III) binding site. The discrepancies may result from a slightly different conformation of glutamine synthetase in solution and in the crystal and/or a slightly different conformation for trivalent Ln(III) binding compared to divalent Mn(II) binding.  相似文献   

17.
18.
The highly stable Ca2+ binding protein, parvalbumin, is prevalent in fish white muscle tissue. The properties of this protein make it a promising antigen for use as a specific biomarker for fish identification. Parvalbumin was purified from white muscle of an adult common snook Centropomus undecimalis using ammonium sulfate precipitation, size-exclusion chromatography (SEC) and anion-exchange HPLC. Parvalbumins were characterized by the presence of an 11-kDa band following gradient-SDS gel electrophoresis and by their immunoreactivity against mouse anti-parvalbumin antibodies. Anion-exchange chromatography of the parvalbumin fraction separated from the SEC column yielded nine fractions. Subsequent analysis of these fractions by isoelectric focusing gel electrophoresis led to a total of seven parvalbumin isotypes, which may lend themselves as biomarkers in fish identification. The presence of these seven parvalbumin isotypes was confirmed independently by reversed-phase HPLC. A dilution endpoint immunoassay was developed for C. undecimalis parvalbumin using a monoclonal antibody directed against its highly conserved calcium binding site. The utility of parvalbumin isotype distribution and specific monoclonal antibodies against fish parvalbumin in species identification is discussed.  相似文献   

19.
Parvalbumin, a Ca2+-binding protein, was isolated from rat testis. This is the first demonstration of the protein in endocrine glands. By using a rat parvalbumin cDNA probe, parvalbumin mRNA was demonstrated in the testis, indicating that the protein is synthesized in this tissue and that testis parvalbumin is a product of the same gene as the one encoding for muscle parvalbumin. Parvalbumin was localized by immunohistochemical methods in the Leydig cells and in the acrosome region of maturing spermatids (stages 1-15). The expression of parvalbumin during testis development was followed. High parvalbumin protein and mRNA levels were found at stages of highest Leydig cell activity, i.e. at late fetal stages until birth and again around postnatal day 50. This suggests that parvalbumin may be involved in the production of testosterone in Leydig cells, a process which is highly dependent on calcium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号