首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Products and materials used incontact with drinking water have the potentialto cause tainting of drinking water. Whilsthealth effects are not necessarily associatedwith such effects, for consumers, flavour orodour are the main parameters they use toassess the wholesomeness of their drinkingwater. There are a number of possible causes oftainting from products and materials and theseare discussed. In many countries products usedin contact with drinking water are screened toavoid odour or flavour problems. However,despite these safeguards tainting problems canand do still occur. Some relate tomisapplication of products in distributionsystems, poor domestic plumbing practices orthe use of domestic appliances after the pointof supply.  相似文献   

2.
Sixty-six genera of nematodes representing 37 families were collected over a 13-month period from untreated and treated water from three water treatment plants in southern Ontario. Two plants receive water from the Grand River which drains agricultural, residential and industrial regions, the third from a small stream in an agricultural district. Specimens were isolated by filtration from weekly samples of untreated and treated water, most were identified to genus but a few to species.Estimated mean density in the organic drift of the river ranged from 0.58 individuals per litre in winter, when it was under ice, to 10.57 per litre during the spring thaw. Most of the 66 genera found passed through the treatment plants and over 50% of these were still motile.Eleven genera were abundant at some time of the year, six known only from soil-dwelling forms and five from aquatic or soil/aquatic species. There was no indication that sewage purification works were a major source of any genus. There were a few plant parasites.Aquatic nematodes occurred during most of the year although they were more abundant during the warmer months, high densities of soil nematodes were a feature of the spring thaw and rains and during heavy autumn rains. More than 50% of the specimens were juveniles and some common genera lacked males.  相似文献   

3.
AIMS: To evaluate the prevalence of Cryptosporidium and Giardia in surface water supplies from the province of Alava, northern Spain, and to investigate possible associations among the presence of these pathogenic protozoa with microbiological, physicochemical and atmospheric parameters. METHODS AND RESULTS: A total of 284 samples of drinking and recreational water supplies were analysed. Cryptosporidium oocysts were found in 63.5% of river samples, 33.3% of reservoirs samples, 15.4% and 22.6% of raw water samples from conventional and small water treatment facilities (respectively), 30.8% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. Giardia cysts were found in 92.3% of river samples, 55.5% of reservoirs samples, 26.9% and 45.2% of raw water samples from conventional and small water treatment facilities (respectively), 19.2% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. The presence of Cryptosporidium and Giardia had significant Pearson's correlation coefficients (P < 0.01) with the turbidity levels of the samples, and a number of significant associations were also found with the count levels for total coliforms and Escherichia coli. The samples were positive for Cryptosporidium significantly (P < 0.05) more frequently during the autumn season than during the spring and winter seasons. No significant differences were found in the seasonal pattern of Giardia. A moderate association (r = 0.52) was found between rainfall and the presence of Cryptosporidium oocysts. CONCLUSIONS: Cryptosporidium and Giardia are consistently found at elevated concentrations in surface waters for human consumption from the province of Alava, northern Spain. SIGNIFICANCE AND IMPACT OF THE STUDY: Water treatments based on rapid filtration process and/or chlorination only are often unsatisfactory to provide safe drinking water, a situation that represents an important public health problem for the affected population because of the risk of waterborne outbreaks.  相似文献   

4.
Psychophysical functions for the odor, taste, and flavor offive common flavorings were obtained by the method of magnitudeestimation. The stimuli included three simple compounds (vanillin,piperonal, and benzaldehyde) and two complex ones (natural vanillaextract and artificial almond essence). The odor intensity ofall the flavorings grew much less rapidly with concentrationthan did taste intensity. The growth of flavor for the complexsubstances and piperonal behaved very much like taste. For vanillinand benzaldehyde, the flavor functions resembled taste functionsat high concentrations but showed a tendency to flatten at lowerconcentrations. These findings implied that, at least for someflavorings, the growth of flavor reflects the most salient featureon the particular concentration range studied. At low concentrationsodor seems to be the most important feature and so flavor functionsare generally flat, but at high concentrations taste becomesthe salient feature and so flavor functions steepen.  相似文献   

5.
Olfaction is important across the animal kingdom for transferring information on, for example, species, sex, group membership, or reproductive parameters. Its relevance has been established in primates including humans, yet research on great apes still is fragmentary. Observational evidence indicates that great apes use their sense of smell in various contexts, but the information content of their body odor has not been analyzed. Our aim was therefore to compare the chemical composition of body odor in great ape species, namely Sumatran orangutans (Pongo abelii (Lesson, 1827), one adult male, five adult females, four nonadults), Western lowland gorillas (Gorilla gorilla gorilla (Savage, 1847), one adult male, two adult females, one nonadult), common chimpanzees (Pan troglodytes (Blumenbach, 1775), four adult males, nine adult females, four nonadults), and bonobos (Pan paniscus (Schwarz, 1929), two adult males, four adult females, two nonadults). We collected 195 samples (five per individual) of 39 captive individuals using cotton swabs and analyzed them using gas chromatography mass spectrometry. We compared the sample richness and intensity, similarity of chemical composition, and relative abundance of compounds. Results show that species, age, and potentially sex have an impact on the variance between odor profiles. Richness and intensity varied significantly between species (gorillas having the highest, bonobos the lowest richness and intensity), and with age (both increasing with age). Richness and intensity did not vary between sexes. Odor samples of the same species were more similar to each other than samples of different species. Among all compounds identified some were associated with age (N = 7), sex (N = 6), and species‐related (N = 37) variance. Our study contributes to the basic understanding of olfactory communication in hominids by showing that the chemical composition of body odor varies across species and individuals, containing potentially important information for social communication.  相似文献   

6.
To understand the distribution of Giardia cysts in drinking water supplies in Seoul, Korea, we collected water samples quarterly at 6 intakes in the Han River, its largest stream and 6 conventional water treatment plants (WTPs) serving drinking water, from 2000 to 2009. Giardia cysts in each of 10 L water were confirmed in 35.0% of intake water samples and the arithmetic mean was 1.65 cysts/10 L (range 0-35 cysts/10 L). The lowest cyst density was observed at Paldang and Kangbuk intakes, and the pollution level was higher at 4 intakes downstream. It seemed that these 4 intakes were under influence of Wangsuk stream at the end of which cysts were found in all samples with the mean of 140 cysts/10 L. The annual mean number of cysts was 0.21-4.21 cysts/10 L, and the cyst level at the second half of the 10 years was about 1/5 of that at first half on average. The cysts were more frequently found in winter, and their mean density was 3.74 cysts/10 L in winter and 0.80-1.08 cysts/10 L in other seasons. All finished water samples collected at 6 WTPs were negative for Giardia in each of 100 L sample for 10 years and cyst removal by physical process was average 2.9-log. It was concluded that conventional water treatment at 6 WTPs of Seoul appears to remove the cysts effectively under the present level of their source water. Domestic wastewater from the urban region could be an important source of Giardia pollution in the river.  相似文献   

7.
AIMS: This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. METHODS AND RESULTS: Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. CONCLUSIONS: The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.  相似文献   

8.
Occurrence of moulds in drinking water   总被引:1,自引:0,他引:1  
AIMS: In order to determine the occurrence of filamentous fungi in public drinking water systems in Norway, water from 14 water supply networks from all over the country was sampled and analysed. Networks with both ground and surface water sources were included in this study. METHODS AND RESULTS: During a one-year period, 273 water samples were collected. Frequencies of fungi in samples from raw water, treated water and from home and hospital installations were determined on the basis of incubation of 100 ml membrane-filtered samples on dichloran 18% glycerol agar media. Filamentous fungi were recovered from 62% of all samples. In ground water 42.3% of the samples were positive for mould growth, while surface waters yielded 69.7% positive samples. CONCLUSIONS: The risk to recover moulds from surface water is three times higher compared with ground water. It is more likely to detect moulds in cold waters and showers than in hot waters. SIGNIFICANCE AND IMPACT OF THE STUDY: By analysing the water reaching the consumers, the results reported in present study indicate that filamentous fungi in drinking water is not negligible, and that moulds should be considered as part of the microbiological analysis parameters in drinking water.  相似文献   

9.
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05?mg?l?1) and Mn (0.02?mg?l?1) concentrations and the remaining four were exposed to a higher (0.3 and 0.4?mg?l?1 for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0?mg?l?1 of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm?2 ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.  相似文献   

10.
AIMS: Human adenoviruses (HAds) have previously been detected in sewage and polluted river and dam water, as well as treated drinking water. The 51 serotypes of HAds cause a wide range of infections with clinical manifestations associated with the gastrointestinal, respiratory and urinary tracts, and the eyes. Water may play a meaningful role in the transmission of many of these HAd serotypes, specifically the enteric HAds which are transmitted via the faecal-oral route. The presence of these viruses in water used for drinking and recreational purposes is considered to constitute a potential health risk. In this study, the risk of infection by the group of HAds previously detected over a period of 1 year in selected drinking water supplies, as well as river and dam water used for recreational purposes, was assessed. METHODS AND RESULTS: Adenoviruses were previously detected in nine of 204 (4.41%) samples of two drinking water supplies (A and B) treated and disinfected according to international specifications, in four of 51 (7.8%) samples of river water and nine of 51 (17.7%) samples of dam water. Application of these previously published results in an exponential risk assessment model indicated an annual risk of infection of 1.01 x 10(-1) and 1.7 x 10(-1) for drinking water supplies A and B, respectively, assuming a daily consumption of 2 l day(-1). The daily risk of infection constituted by HAds in the river water was calculated as 1.71 x 10(-4), and in the dam water as 3.12 x 10(-5), assuming a consumption of 30 ml of water per day. CONCLUSIONS: The risk of infection exceeded the tolerable risk of one infection per 10 000 consumers per year proposed for drinking water. However, the results for river and dam water used for recreational purposes were within the tolerable risk of one infection per 1000 bathers per day proposed for environmental waters used for recreational purposes. SIGNIFICANCE AND IMPACT OF THE STUDY: The study showed that the risk of HAd infection calculated for the drinking water supplies and the recreational water may overestimate the actual risk of infection, as conservative values were assumed for some of the variables. For a more accurate assessment of the potential risk of infection research should at least include a thorough investigation of the water consumption of individuals in South Africa, and the efficiency of recovery of the glass wool adsorption-elution method.  相似文献   

11.
This paper is designed to provide an overview of the main membrane-assisted processes that can be used for the removal of toxic inorganic anions from drinking water supplies. The emphasis has been placed on integrated process solutions, including the emerging issue of membrane bioreactors. An attempt is made to compare critically recently reported results, reveal the best existing membrane technologies and identify the most promising integrated membrane bio/processes currently being under investigation. Selected examples are discussed in each case with respect to their advantages and limitations compared to conventional methods for removal of anionic pollutants. The use of membranes is particularly attractive for separating ions between two liquid phases (purified and concentrated water streams) because many of the difficulties associated with precipitation, coagulation or adsorption and phase separation can be avoided. Therefore, membrane technologies are already successfully used on large-scale for removal of inorganic anions such as nitrate, fluoride, arsenic species, etc. The concentrated brine discharge and/or treatment, however, can be problematic in many cases. Membrane bioreactors allow for complete depollution but water quality, insufficiently stable process operation, and economical reasons still limit their wider application in drinking water treatment. The development of more efficient membranes, the design of cost-effective operating conditions, especially long-term operations without or with minimal membrane inorganic and/or biological fouling, and reduction of the specific energy consumption requirements are the major challenges.  相似文献   

12.
13.
14.
15.
16.
Diarrheal disease is one of the major causes of morbidity and mortality in developing countries. Drinking water is a primary transmission route of infectious diarrheagenic bacteria in a rural area of Kenya (Microbiol. Immunol. 41: 773-778, 1997). We tried to prevent diarrhea at villages with approximately 1,500 households in Kenya by pasteurizing drinking water. A durable simple thermoindicator which changes color at 70 C was used as an indicator of pasteurization. The number of households in which drinking water was coliform bacteria-free increased from 10.7% to 43.1% after adoption of a pasteurization practice. Consequently, the incidence of severe diarrhea among people drinking pasteurized water was significantly lower than in people taking raw water (odds ratio=0.55, P=0.0016). The reduction ratio of the incidence after pasteurization was nearly equivalent with that after the adoption of a boiling method. Employment of women leaders as fieldworkers and demonstration of bacterial colony disappearance on agar plates by pasteurization also affected reduction of the diarrheal incidence.  相似文献   

17.
Current models to study Legionella pathogenesis include the use of primary macrophages and monocyte cell lines, various free-living protozoan species and murine models of pneumonia. However, there are very few studies of Legionella spp. pathogenesis aimed at associating the role of biofilm colonization and parasitization of biofilm microbiota and release of virulent bacterial cell/vacuoles in drinking water distribution systems. Moreover, the implications of these environmental niches for drinking water exposure to pathogenic legionellae are poorly understood. This review summarizes the known mechanisms of Legionella spp. proliferation within Acanthamoeba and mammalian cells and advocates the use of the amoeba model to study Legionella pathogenicity because of their close association with Legionella spp. in the aquatic environment. The putative role of biofilms and amoebae in the proliferation, development and dissemination of potentially pathogenic Legionella spp. is also discussed. Elucidating the mechanisms of Legionella pathogenicity development in our drinking water systems will aid in elimination strategies and procedural designs for drinking water systems and in controlling exposure to Legionella spp. and similar pathogens.  相似文献   

18.
AIMS: Biofilms in water distribution systems represent a far more significant reservoir of micro-organisms than the water phase. Biofilms are (i) resistant to disinfectants, (ii) nuclei for microbial regrowth, (iii) a refuge for pathogens, (iv) accompanied by taste and odour problems, and (v) corrode surfaces. The effects of the current strategies for disinfection of drinking water systems in large buildings (chlorination, copper and silver ionization, and hyper-heating) were compared with a new generation of bismuth thiol (BT) biocides. METHODS AND RESULTS: Multispecies biofilms were treated with 0.8 mg l(-1) of free chlorine, 400 and 40 microg l(-1) of copper and silver ions, respectively, at 55 and 70 degrees C, and bismuth-2,3-dimercaptopropanol (BisBAL). Furthermore, the effect of combined heat and BisBAL on planktonic cell viability was examined in monoculture using Escherichia coli suspensions. Inactivation rates for BisBAL were similar to copper-silver ions, where the effects were slower than for free chlorine or temperature. The BisBAL effect on E. coli monocultures was augmented greatly by increasing temperatures. CONCLUSIONS: Like copper-silver ions, BTs show more persistent residual effects than chlorine and hyper-heating in water systems. BT efficiency increased with temperature. Like copper-silver ions, BT action is relatively slow. SIGNIFICANCE AND IMPACT OF THE STUDY: BT presents a new approach to containing water biofilms. BT action is not as rapid, but is more thorough than chlorine, and less caustic. BTs may also be more efficacious in hot water systems. At sub-minimum inhibition concentration levels, BTs uniquely inhibit bacterial exopolysaccharide, thereby retarding biofilm formation. Thus, the combination of bactericidal and residual effects may prevent slime build-up in hot water systems.  相似文献   

19.
Aims:  We performed a preliminary assessment of the eukaryotic 18S rDNA diversity present in finished drinking water samples from three different surface water treatment plants supplying water to the city of Paris (France).
Methods and Results:  A molecular analysis was performed on a sample from each site based on sequencing of PCR amplified and cloned 18S ribosomal RNA genes. Overall, the 18S rDNA sequences combined from all samples could be affiliated to the Amoebozoa (20·8% of the phylotypes), Ciliophora (25%), Metazoa (33·3%), Fungi (8·3%), Cercozoa (4·2%) and unclassified eukaryotes (8·3%) groups.
Conclusions:  The 18S rDNA sequences affiliated to the Amoebozoa, Ciliophora and Metazoa lineages were found to be the most abundant phylotypes observed in the drinking water samples. Phylotypes found to be present in two, or all three, samples (41·7% of the total) may represent groups with members adapted to drinking water treatment plant (DWTP) ecosystem conditions.
Significance and Impact of the Study:  This study shows that finished drinking water can contain 18S rDNA sequences representing a variety of eukaryotic taxa. Further research is needed to better characterize the eukaryotic biodiversity of DWTPs and the effects of the finished drinking water diversity on the downstream water distribution network.  相似文献   

20.
The adaptability of the taste system in fish has led to a large variety in taste bud morphology, abundance and distribution, as well as in taste physiology characteristics in closely related species with different modes of life and feeding ecology. However, the modifications evoked in the sense of taste, or gustation, particularly during ontogeny when fishes are subject to different environmental variables, remain poorly studied. This review paper focusses on current knowledge to show how plastic and resistant the taste system in fishes is to various external factors, linked to other sensory inputs and shifts in physiological state of individuals. Ambient water temperature is fundamental to many aspects of fish biology and taste preferences are stable to many substances, however, the taste-cell turnover rate strongly depends on water temperature. Taste preferences are stable within water salinity, which gives rise to the possibility that the taste system in anadromous and catadromous fishes will only change minimally after their migration to a new environment. Food-taste selectivity is linked to fish diet and to individual feeding experience as well as the motivation to feed evoked by attractive (water extracts of food) and repellent (alarm pheromone) odours. In contrast, starvation leads to loss of aversion to many deterrent substances, which explains the consumption by starving fishes of new objects, previously refused or just occasionally consumed. Food hardness can significantly modify the final feeding decision to swallow or to reject a grasped and highly palatable food item. Heavy metals, detergents, aromatic hydrocarbons and other water contaminants have the strongest and quickest negative effects on structure and function of taste system in fish and depress taste perception and ability of fishes to respond adequately to taste stimuli after short exposures. Owing to phenotypic plasticity, the taste system can proliferate and partially restore the ability of fishes to respond to food odour after a complete loss of olfaction. In general, the taste system, especially its functionality, is regarded as stable over the life of a fish despite any alteration in their environment and such resistance is vital for maintaining physiological homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号