首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-stranded, linear DNA molecules form the liquid-crystalline dispersions (LCD) in water-salt solutions containing positively charged polyconidin molecules. It was established from the analysis of the absorption spectra of the LCDs formed from (DNA-polyconidin) complexes, that the mean size of the particles of these dispersions is equal to -6000 angstroms. The small-angle X-ray data show, that in the LCD particles different density of packing of the (DNA-polycation) complexes is realized. The comparison of the X-ray data of the liquid-crystalline phases of (DNA-polyconidin) complexes formed under various conditions with the phase diagram, that reflects the polymorphism of the linear double-stranded DNA liquid crystals, demonstrates that the hexagonal mode of the LCD packing is existing in 0.15-0.4 M NaCl solutions, whereas in 0.4-0.55 M NaCl solutions-- the cholesteric one. As a result of specific spatial organization the cholesteric LCD possesses of an abnormal optical activity in the CD spectrum. The similar situation takes place in the case of another synthetic polycation--poly(2,5-ionen), whose chemical structure differs from that of polyconidin. Thus, the structural polymorphism of the (DNA-polyconidine) LCDs was evidenced. It means that change of NaCl concentration opens a gate to control the spatial packing of the molecules of (DNA-polycation) complexes in the particles of LCDs. The supposition about mechanism of formation of the DNA cholesteric liquid-crystalline state in the narrow interval of NaCl concentrations was suggested.  相似文献   

2.
The current notion of the organization of molecules in a cholesteric phase is fairly well substantiated in the case of low-molecular-weight compounds. However, this question is open to discussion in the case of double-stranded nucleic acids. In this work, an attempt to compare the well-known data on the structure of cholesteric phases formed by double-stranded DNA molecules and the results of experimental modeling obtained by the authors has been undertaken. The comparison brings leads to assumption regarding the high probability of the existence of both short-range (positional) and long-range (orientational) order in the arrangement of double-stranded DNA molecules in the liquid crystalline phase. The presence of the orientational order, i.e., the rotation of quasinematic layers of double-stranded DNA molecules through a small angle, determines the formation of a spatially twisted (cholesteric) structure with specific physical and chemical properties. In addition, these results prompt a suggestion on the mode of the ordering of dsDNA molecules in liquid-crystalline dispersion particles and allow these particles to be considered candidate biosensing units.  相似文献   

3.
The effects of small size (~2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.  相似文献   

4.
Magnetic ordering of DNA liquid crystals   总被引:2,自引:0,他引:2  
R Brandes  D R Kearns 《Biochemistry》1986,25(20):5890-5895
Sonicated calf thymus DNA with an average length of approximately 100 base pairs has been found to form a cholesteric liquid crystal at a concentration of approximately 250 mg of DNA/mL of solution. Immediately after preparation, small ordered domains of a few micrometers are formed, resulting in an opaque solution. This liquid crystal can readily be oriented in the magnetic field of an NMR magnet, resulting in a clear birefringent phase. The DNA molecules align with their helix axes perpendicular to the field so that the cholesteric pitch axis was parallel with the field. A pitch length of approximately 2.5 microns for the cholesteric phase was determined both from optical measurements (optical light rotation) and from NMR measurements (solvent diffusion). The observation that DNA molecules can be magnetically oriented opens up new possibilities for studying the structure and dynamics of the aligned DNA molecules.  相似文献   

5.
The circular dichroism spectra of liquid-crystalline dispersions obtained by phase exclusion of linear double-stranded DNA molecules from aqueous saline solutions of polyethylene glycol (120 ≤ CPEG ≤ 300 mg/mL) have been investigated. The formation of liquid-crystalline dispersions at polyethylene glycol concentrations ranging from 120 to 200 mg/mL was accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism; this is indicative of cholesteric packing of the double stranded DNA molecules in the particles of the dispersion. Liquid-crystalline dispersions formed at PEG concentrations higher than 220 mg/mL and room temperature did not show any abnormal bands in the circular dichroism spectra; this is indicative of hexagonal packing of double-stranded DNA molecules in the particles of the dispersions. Heating of optically inactive liquid crystal dispersions induced a transition of the dispersions into a different state accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism. This transition is considered within the concept of the transformation of a hexagonal packing of DNA molecules into a cholesteric packing. A qualitative mechanism of such a transition is proposed that is formulated in the terms of the “quasinematic” layers of double-stranded DNA molecules that change their spatial orientation under the competing influences of the osmotic pressure of the solvent, orientational elasticity of the cholesteric packing, and thermal fluctuations.  相似文献   

6.
7.
Due to noncooperative binding of ligands to DNA molecules, DNA molecules are in equilibrium with different numbers of adsorbed ligands. This equilibrium for a given concentration of the free ligand in the solution is characterized by the distribution function, which describes the probability of revealing the DNA molecule with a definite number of adsorbed ligands. If polycations act as ligands, DNA molecules with the number of ligands sufficient for neutralizing the charges on phosphates may undergo a phase transition. One example of this transition is the formation of liquid-crystalline dispersions during the binding of DNA to chitosan. We analyzed the binding of chitosan to DNA on the assumption that this binding is due to equilibrium adsorption. At a definite concentration of chitosan in solution, DNA molecules are in equilibrium with different numbers of adsorbed molecules of chitosan. If the number of adsorbed ligands exceeds some critical value, the DNA molecule covered with chitosan becomes capable of interacting with other DNA molecules. As a result of this interaction (attraction), liquid-crystalline dispersions can form. Equations describing the dependence of the concentration of DNA molecules on the concentration of the ligand in solution were derived. It was shown that, at given parameters of the model, it is possible to describe experimental data characterizing the formation of cholesteric liquid-crystalline dispersions. The analysis of the data makes it possible to reconstitute both the size of the binding site occupied by chitosan on the DNA and the energy of interaction of chitosan with DNA.  相似文献   

8.
Linear double-stranded DNA molecules interact with positively charged polyconidine molecules in aqueous salt solutions to yield liquid-crystalline dispersions (LCDs) with a mean particle diameter of ~6000 Å. The packing density of (DNA-polycation) complexes differs among LCD particles formed at different ionic strengths. X-ray data on the liquid-crystalline phases of (DNA-polyconidine) complexes formed under different conditions were compared with a phase diagram, reflecting polymorphism of liquid crystals of linear double-stranded DNA. It was shown that LCD was hexagonal at 0.15 M ≤ C NaCl < 0.4 M and cholesteric at 0.4 M ≤ C NaCl < 0.55 M. Cholesteric LCD displayed abnormal optical activity in the circular dichroism spectrum. A similar situation was observed with poly(2,5-ionene), another polycation differing in chemical structure from polyconidine. The results demonstrated structural polymorphism of (DNA-polycation) LCDs. It was assumed that the packing mode of (DNA-polycation) complexes in LCD particles can be regulated by changing NaCl concentration. The mechanism generating the cholesteric liquid-crystalline state of DNA in a narrow range of NaCl concentrations is discussed.  相似文献   

9.
The properties of the particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules obtained as a result of phase exclusion of these molecules from water-salt polymer-containing solutions are briefly described. Physicochemical properties of quasinematic layers of dispersion particles and double-stranded DNA molecules in their content are taken into account in the course of developing fundamental background of the liquid-crystalline approach to the DNA structural nanotechnology. According to different versions of this approach, which is based on intraparticle gelation of cholesteric liquid-crystalline dispersions, spatial structures (DNA nanoconstructions, “rigid” DNA particles) with unique properties, are created. By means of atomic force microscopy images of “rigid” DNA particles of different type are registered. Specific properties of metallic nanoparticles (in particular, gold nanoparticles) are considered while developing the other approach to DNA structural nanotechnology, which provides the basis for “metallized” DNA nanoconstructions.  相似文献   

10.
The nature of chiral interactions among chiral biopolymers, such as DNA, protein alpha-helices, and rodlike virus particles, remains elusive. In particular, a satisfactory model connecting molecular chiral interactions and the pitch of the resulting chiral mesophases is lacking. We report the measurement of short-fragment (146-bp) DNA cholesteric spherulite pitch as a function of osmotic pressure, average DNA interaxial spacing, and salt concentration. We determined cholesteric pitch and interaxial spacing by polarizing optical microscopy and x-ray scattering, respectively, from which the twist-angle between DNA molecules can be calculated. Surprisingly, we found that decreasing ionic strength resulted in weaker chiral interactions between DNA chains, as evidenced by the decrease in the twist-angle, and consequent increase in the cholesteric pitch, for a fixed interaxial spacing. We propose that this behavior can be explained by increased smearing-out of the helical charge pattern along DNA as the Debye screening length is increased.  相似文献   

11.
Right-handed helical double-stranded DNA molecules were shown to interact with chitosans to form under certain conditions (chitosan molecular weight, content of amino groups, distance between amino groups, ionic strength and pH of solution) cholesteric liquid-crystalline dispersions characterized by abnormal positive band in CD spectrum in the absorption region of DNA nitrogen bases. Conditions were found for the appearance of intense negative band in CD spectrum upon dispersion formation. In some cases, no intense band appeared in CD spectrum in spite of dispersion formation. These results indicate not only the multiple forms of liquid-crystalline dispersions of DNA-chitosan complexes but also a possibility to control the spatial properties of these complexes. The multiplicity of liquid-crystalline forms of DNA-chitosan complexes was attempted to explain by the effect of character of dipoles distribution over the surface of DNA molecules on the sense of spatial twist of cholesteric liquid crystals resulting from molecules of the complexes.  相似文献   

12.
Superhelical pBR322 DNA molecules form liquid-crystalline dispersions in water-salt solutions containing poly(ethyleneglycol). The formation of the liquid-crystalline dispersions from superhelical DNA molecules results in the appearance of two sites inside the DNA molecules that are split by Micrococcal nuclease. The first site of digestion does not differ from the standard site split by this enzyme in water-salt solutions, whereas the second one represents a new site specific only for the DNA molecules forming liquid-crystalline dispersions. Splitting of the DNA molecule through the first site is accompanied by formation of its linear form; splitting of a new site results in the formation of two linear DNA fragments with molecular masses equal to half of the initial DNA molecules. Enzyme digestion of superhelical DNA molecules forming liquid-crystalline dispersions induces a reformation of the "nonspecific" space organization of dispersions to the cholesteric one. A hypothetic model for packing of the superhelical DNA molecules inside liquid-crystalline dispersions and its transformation under enzyme action is suggested.  相似文献   

13.
Cholesteric organization of DNA in vivo and in vitro   总被引:4,自引:0,他引:4  
In concentrated solutions DNA organizes spontaneously to form the "cholesteric" phase which is one type of liquid crystal. We have reproducibly obtained both continuous cholesteric phases and isolated cholesteric globules in equilibrium with the isotropic phase. A comparison is made between this in vitro cholesteric organization and dinoflagellate chromosomes which present the same organization in vivo. The observed defects are analyzed in the two cases. It appears that the cholesteric organization is due to self-assembly phenomena and that the shape of globules and chromosomes is due both to surface tensions and to the presence of defects.  相似文献   

14.
Right-handed helical double-stranded DNA molecules were shown to interact with chitosans to form under certain conditions (chitosan molecular weight, content of amino groups, distance between amino groups, ionic strength and pH of solution) cholesteric liquid-crystalline dispersions characterized by abnormal positive band in CD spectrum in the absorption region of DNA nitrogen bases. Conditions were found for the appearance of intense negative band in CD spectrum upon dispersion formation. In some cases, no intense band appeared in CD spectrum in spite of dispersion formation. These results indicate not only the multiple forms of liquid-crystalline dispersions of DNA–chitosan complexes but also a possibility to control the spatial properties of these complexes. The multiplicity of liquid-crystalline forms of DNA–chitosan complexes was attempted to explain by the effect of character of dipoles distribution over the surface of DNA molecules on the sense of spatial twist of cholesteric liquid crystals resulting from molecules of the complexes.  相似文献   

15.
F Livolant  M F Maestre 《Biochemistry》1988,27(8):3056-3068
Two highly condensed structures of DNA have been analyzed in the circular dichroism (CD) microscope: the cholesteric liquid-crystalline phase of DNA and the nucleus of a dinoflagellate (Prorocentrum micans). In both cases, the DNA shows a helical cholesteric organization, but the helical pitch equals about 2500 nm in the first case and 250 nm in the second one. Since the absorption band of DNA is located at 260 nm, the reflection and absorption bands are well separated in the cholesteric phase of DNA and are overlapping in the dinoflagellate nucleus. However, both structures give a very strong negative CD signal at 265 nm. We show that this very strong signal cannot correspond to a Borrmann effect, i.e., to a superposition of the absorption and reflection bands, but is a differential absorption of left versus right circularly polarized light. This anomalous differential absorption is probably due to a significant scattering of light, inside of the structure, which produces a resonance phenomenon in the absorption band of the chromophore. Therefore, for any helical structure containing a chromophore, the apparent CD can be expressed as CD = [(epsilon L - epsilon R)cl] + (psi L - psi R) + (SL - SR) The first term is true absorption and is located in the absorption band of the chromophore, and the last term is true scattering and is observed at the wavelength corresponding to the helical pitch of the structure. The second term (psi L - psi R) corresponds to the anomalous differential absorption observed in dense superhelical structures of DNA. It superimposes to the first term in the absorption band of the chromophore. psi L - psi R is a measure of the perfection of the helical structure and of the density of chromophores in the material. Intercalative dyes [ethidium bromide and meso-tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) and its nickel(II) derivative (NiIITMpyP-4)] were inserted in the dinoflagellate chromatin. The CD signal recorded in their absorption band mimics the signal observed in the absorption band of DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA molecules is left-handed, and we show that this situation is the most frequently encountered in vivo and vitro.  相似文献   

16.
Conditions of formation of DNA aggregates by the addition of spermidine were determined with 146 base pair DNA fragments as a function of spermidine and NaCl concentration. Two different phases of spermidine-DNA complexes are obtained: a cholesteric liquid crystalline phase with a large helical pitch, with interhelix distances ranging from 31.6 to 32.6 A, and a columnar hexagonal phase with a restricted fluidity in which DNA molecules are more closely packed (29.85 +/- 0.05 A). In both phases, the DNA molecule retains its B form. These phases are always observed in equilibrium with the dilute isotropic solution, and their phase diagram is defined for a DNA concentration of 1 mg/ml. DNA liquid crystalline phases induced by spermidine are compared with the DNA mesophases already described in concentrated solutions in the absence of spermidine. We propose that the liquid crystalline character of the spermidine DNA complexes is involved in the stimulation of the functional properties of the DNA reported in numerous experimental articles, and we discuss how the nature of the phase could regulate the degree of activity of the molecule.  相似文献   

17.
Studies are described which strongly support a cholesteric liquid crystal-like quaternary structure for the DNA molecules of a biologically native chromosomal preparation from equine sperm cells. Discrete chromosomal fibers released from the head pieces of equine spermatozoon cells were prepared intact and probed for liquid crystalline ordering using reflectance and linear dichroism spectroscopy. Assuming cholesteric liquid crystalline order for the DNA molecules within the chromatin fibers, parameters measured experimentally were used to calculate the circular dichroism (CD) of the fibers. The calculated results compare remarkably well with the experimentally measured CD of the sperm chromosomal fibers and suggest a specific cholesteric liquid crystal-like quanternary structural ordering of DNA molecules in equine sperm chromatin fibers. The potential of CD spectroscopy as a tool for the study of long-range ordering of macromolecules is discussed.  相似文献   

18.
We report on the investigation of the structure of DNA liquid crystal (LC) phases by means of polarization sensitive two-photon microscopy (PSTPM). DNA was stained with fluorescent dyes, an intercalator propidium iodide, or a groove binder Hoechst 3342, and the angular dependence of the intensity of two-photon excited fluorescence emitted by the dye was collected. The local orientation of DNA molecules in cholesteric and columnar LC phases was established on the basis of the relative angle between the transition dipole of the dye and the long axis of DNA helix. Three-dimensional images of the cholesteric phase were obtained making use of the intrinsic 3D resolving ability of two-photon microscopy. We also discuss the influence of dyes on the parameters of DNA LC phases and comment on advantages and limitations of the PSTPM technique in comparison with other LC characterization techniques.  相似文献   

19.
The specific features of liquid-crystalline dispersions formed by double-stranded DNA molecules interacting with polypropylenimine dendrimers of five generations (G1—G5) in aqueous saline solutions of various ionic strengths were studied. It was demonstrated that the binding of dendrimer molecules to DNA led to the formation of dispersions independently of solution ionic strength and dendrimer structure. By the example of a generation 4 dendrimer, it was shown that the shape of dispersion particles of the (DNA-dendrimer G4) complex were close to a sphere with a diameter of 300–400 nm. The boundary conditions (ionic strength of solution and molecular mass of dendrimer) for the formation of optically active (cholesteric) and optically inactive (DNA-dendrimer) dispersions were determined by circular dichroism spectroscopy. The dispersions formed by dendrimers G1–G3 and G5 were optically inactive. Dendrimers G4 formed liquid-crystalline dispersions of two types. Cholesteric liquid-crystalline dispersions were formed in high ionic strength solutions (μ > 0.4), whereas the dispersions formed in low and intermediate ionic strength solutions (μ < 0.4) lacked an intense negative band in their circular dichroism spectra. The effect of molecular crowding on both the (DNA-dendrimer G4) binding efficiency and the pattern of spatial packing of the (DNA-dendrimer G4) complexes in the liquid-crystalline dispersion particles was demonstrated. The factors determining the structural polymorphism of the liquid-crystalline dispersions of (DNA-dendrimer) complexes are postulated.  相似文献   

20.
Doping nematic liquid crystals with nonracemic chiral compounds induces a twisted nematic (cholesteric) phase. The ability of solutes to twist the nematic phase may be related to the overall shape of the chiral dopant and consequently to its absolute configuration. The cholesteric induction is therefore a powerful tool complementary to chiroptical techniques to obtain stereochemical information on chiral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号