共查询到20条相似文献,搜索用时 0 毫秒
1.
Guadalupe Sabio Norman J. Kennedy Julie Cavanagh-Kyros Dae Young Jung Hwi Jin Ko Helena Ong Tamera Barrett Jason K. Kim Roger J. Davis 《Molecular and cellular biology》2010,30(1):106-115
Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH2-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1−/− mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (MKO) mice exhibit improved insulin sensitivity compared with control wild-type (MWT) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed MWT mice but is suppressed only in the liver and adipose tissue of MKO mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.Obesity is a major risk factor for the development of insulin resistance, hyperglycemia, and metabolic syndrome that can lead to β-cell dysfunction and type 2 diabetes (8). The prevalence of human obesity represents a serious health problem in the United States. It is therefore important that we obtain a detailed understanding of the molecular mechanism that accounts for obesity-induced insulin resistance. Recent progress has led to the identification of signal transduction pathways that may mediate the effects of obesity on insulin resistance (14, 23).c-Jun NH2-terminal kinase 1 (JNK1) represents one signaling pathway that has been implicated in the pathogenesis of metabolic syndrome and type 2 diabetes (21). JNK1 is activated when mice are fed a high-fat diet (HFD) (7). Moreover, Jnk1−/− mice are protected against HFD-induced insulin resistance (7). The mechanism of protection is mediated, in part, by the failure of Jnk1−/− mice to develop HFD-induced obesity (7). However, JNK1 can regulate insulin resistance independently of obesity. Thus, mice with an adipose tissue-specific JNK1 deficiency develop normal diet-induced obesity but exhibit selective protection against HFD-induced insulin resistance in both the liver and adipose tissue (16). These data indicate that adipose tissue JNK1 plays a critical role during the development of HFD-induced insulin resistance.The liver plays a key role in the insulin-stimulated disposal of blood glucose during the postprandial state because of reduced gluconeogenesis and increased glycogen synthesis (17). However, glucose uptake by skeletal muscle also makes a major contribution to insulin-stimulated glucose disposal (17). Muscle may therefore be an important target of obesity-induced JNK1 signaling and the regulation of glucose homeostasis.The purpose of this study was to test the role of JNK1 in muscle. Our approach was to examine the effect of a muscle-specific ablation of the Jnk1 gene in mice. We found that HFD-fed control wild-type (MWT) mice and muscle-specific JNK1-deficient (MKO) mice became similarly obese. However, MKO mice were selectively protected against HFD-induced insulin resistance. This analysis demonstrates that muscle JNK1 contributes to the effects of obesity on insulin resistance. 相似文献
2.
The c-Jun NH2-terminal kinase (JNK) is implicated in proliferation. Mice with a deficiency of either the Jnk1 or the Jnk2 genes are viable, but a compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality. Studies using conditional gene ablation and chemical genetic approaches demonstrate that the combined loss of JNK1 and JNK2 protein kinase function results in rapid senescence. To test whether this role of JNK was required for stem cell proliferation, we isolated embryonic stem (ES) cells from wild-type and JNK-deficient mice. We found that Jnk1−/− Jnk2−/− ES cells underwent self-renewal, but these cells proliferated more rapidly than wild-type ES cells and exhibited major defects in lineage-specific differentiation. Together, these data demonstrate that JNK is not required for proliferation or self-renewal of ES cells, but JNK plays a key role in the differentiation of ES cells.The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein (MAP) kinase group of signaling proteins. JNK is encoded by two ubiquitously expressed genes (Jnk1 and Jnk2) and by a third gene (Jnk3) that is selectively expressed in neurons (14). Gene disruption studies demonstrate that mice without Jnk1 or Jnk2 are viable, but compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality (14). Murine embryonic fibroblasts (MEFs) isolated from Jnk1−/− Jnk2−/− mice exhibit a severe growth retardation phenotype (54). The markedly reduced growth of Jnk1−/− Jnk2−/− MEFs is consistent with the finding that JNK is critically required for the regulation of AP1-dependent gene expression (56) that is implicated in cellular proliferation (26). Thus, Jnk1−/− Jnk2−/− MEFs express low levels of AP1 proteins (e.g., c-Jun and JunD) and exhibit marked defects in AP1 target gene expression (34, 56). This loss of AP1 function is mediated, in part, by reduced phosphorylation of the activation domain of Jun family proteins and ATF2 (56).More recent studies using a conditional gene ablation strategy have demonstrated that compound JNK deficiency causes rapid senescence (12). This conclusion was confirmed by using chemical genetic analysis with MEFs isolated from mice with a germ line mutation that sensitizes JNK to inhibition by a predesigned small-molecule drug (12, 25). This form of senescence was found to be p53 dependent (12) and resembles the p53-dependent senescence of c-Jun−/− MEFs (49). These data indicate that JNK plays a critical role in cellular proliferation. Indeed, it is possible that the p53-dependent senescence observed in JNK-deficient cells may contribute to aging. This is because altered p53 function is established to be an important determinant of early aging (36, 55). Importantly, this role of p53 in aging appears to be distinct from p53-mediated tumor suppression and DNA damage responses (21, 39, 43).One aspect of the aging process is a reduction in the regenerative capacity of stem cells (50). Indeed, it has been established that altered p53 activity associated with aging causes decreased stem cell function (8, 18, 42) and that disruption of the p53 pathway can increase stem cell function (1). Since JNK can influence p53-dependent senescence (12), these data indicate that JNK may be important for stem cell proliferation and self-renewal potential.Embryonic stem (ES) cells proliferate and are capable of both self-renewal and differentiation to multiple cell types. Indeed, murine ES cells can differentiate to create all tissues within a mouse. The profound growth retardation and rapid p53-dependent senescence of Jnk1−/− Jnk2−/− MEFs (12) suggests that JNK may play a critical role in the normal function of ES cells, including self-renewal and differentiation potential. The purpose of the present study was to test this hypothesis. Our approach was to isolate ES cells from wild-type and JNK-deficient mice. We demonstrate that JNK is not required for self-renewal or the proliferation of ES cells. However, JNK is required for ES cell differentiation. 相似文献
3.
基因敲除技术,是利用同源重组的基因打靶技术,将打靶构建物与野生型的等位基因同源重组并交叉互换,经筛选得到所需的某一目的基因缺失的DNA片段,并创建出表达特异性状的动物模型.由于干细胞培养和稳定转染技术的发展,使基因敲除在JNK-2的基因功能、酶学功能研究中的作用日益受到重视.本文就该技术及其在JNK-2研究中的应用、进展及存在的问题做一综述. 相似文献
4.
A Network of Mitogen-Activated Protein Kinases Links G Protein-Coupled Receptors to the c-jun Promoter: a Role for c-Jun NH2-Terminal Kinase, p38s, and Extracellular Signal-Regulated Kinase 5 总被引:7,自引:0,他引:7 下载免费PDF全文
Maria Julia Marinissen Mario Chiariello Michael Pallante J. Silvio Gutkind 《Molecular and cellular biology》1999,19(6):4289-4301
5.
《Molecular cell biology research communications》2001,4(2):122-128
Onconase, an anticancer ribonuclease, damages cellular tRNA and causes caspase-dependent apoptosis in targeted cells (M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, and B. E. Magun. Cancer Res. 60, 1983–1994, 2000). The proapoptotic action of onconase depends on its RNase activity, but the molecular mechanisms leading to RNA damage-induced caspase activation are completely unknown. In this study, we have investigated whether onconase activates two signal-transduction pathways commonly stimulated by conventional chemo- and radiotherapy, namely the stress-activated protein kinase (SAPK) cascade and the pathway leading to the activation of nuclear factor-kappa B (NF-κB). We found that, in all cell types tested, onconase is a potent activator of SAPK1 (JNK1 and JNK2) and SAPK2 (p38 MAP kinase), but that it is incapable of activating NF-κB. Inhibition of p38 MAP kinase activity with a pharmacological inhibitor, SB203580, demonstrated that p38 MAP kinase is not required for onconase cytotoxicity. Using explanted fibroblasts from mice that contain targeted disruption of both jnk1 and jnk2 alleles, we found that JNKs are important mediators of onconase-induced cytotoxicity. Surprisingly, following the immortalization of these same cells with human papilloma virus (HPV16) gene products E6 and E7, additional proapoptotic pathways (exclusive of JNK) were provoked by onconase. Our results demonstrate that onconase may activate proapoptotic pathways in tumor cells that are not able to be accessed in normal cells. These results present the possibility that the cytotoxic activity of onconase in normal cells may be reduced by blocking the activity of JNKs. 相似文献
6.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells. 相似文献
7.
Kai-Hui Sun Hyoung-gon Lee Mark A. Smith Kavita Shah 《Molecular biology of the cell》2009,20(21):4611-4619
Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer''s disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a major regulator of the JNK cascade. Deregulated Cdk5 induces biphasic activation of JNK pathway. The first phase revealed c-Jun as a direct substrate of Cdk5, whose activation is independent of reactive oxygen species (ROS) and JNK. In the second phase, Cdk5 activates c-Jun via ROS-mediated activation of JNK. Rapid c-Jun activation is supported by in vivo data showing c-Jun phosphorylation in cerebral cortex upon p25 induction in transgenic mice. Cdk5-mediated biphasic activation of c-Jun highlights c-Jun, rather than JNK, as an important therapeutic target, which was confirmed in neuronal cells. Finally, Cdk5 inhibition endows superior protection against neurotoxicity, suggesting that Cdk5 is a preferable therapeutic target for AD relative to JNK and c-Jun. 相似文献
8.
The NH(2)-terminal amino acid composition of the soluble and ribosomal proteins from Neurospora crassa mycelia and conidia was determined by the dinitrophenyl method. A nonrandom distribution of NH(2)-terminal amino acids was observed in the complex protein mixtures. Glycine, alanine, and serine accounted for 75% of the NH(2)-terminal amino acids, and glycine appeared most frequently in mature proteins of mycelia. The appearance of phenylalanine as one of the major NH(2)-termini in crude conidial fraction suggests that the composition of proteins may vary in different developmental stages. 相似文献
9.
rlk/TXK Encodes Two Forms of a Novel Cysteine String Tyrosine Kinase Activated by Src Family Kinases 总被引:7,自引:1,他引:6 下载免费PDF全文
Jayantha Debnath Mario Chamorro Michael J. Czar Edward M. Schaeffer Michael J. Lenardo Harold E. Varmus Pamela L. Schwartzberg 《Molecular and cellular biology》1999,19(2):1498-1507
Rlk/Txk is a member of the BTK/Tec family of tyrosine kinases and is primarily expressed in T lymphocytes. Unlike other members of this kinase family, Rlk lacks a pleckstrin homology (PH) domain near the amino terminus and instead contains a distinctive cysteine string motif. We demonstrate here that Rlk protein consists of two isoforms that arise by alternative initiation of translation from the same cDNA. The shorter, internally initiated protein species lacks the cysteine string motif and is located in the nucleus when expressed in the absence of the larger form. In contrast, the larger form is cytoplasmic. We show that the larger form is palmitoylated and that mutation of its cysteine string motif both abolishes palmitoylation and allows the protein to migrate to the nucleus. The cysteine string, therefore, is a critical determinant of both fatty acid modification and protein localization for the larger isoform of Rlk, suggesting that Rlk regulation is distinct from the other Btk family kinases. We further show that Rlk is phosphorylated and changes localization in response to T-cell-receptor (TCR) activation and, like the other Btk family kinases, can be phosphorylated and activated by Src family kinases. However, unlike the other Btk family members, Rlk is activated independently of the activity of phosphatidylinositol 3-kinase, consistent with its lack of a PH domain. Thus, Rlk has two distinct isoforms, each of which may have unique properties in signaling downstream from the TCR. 相似文献
10.
11.
The trithorax Group Gene moira Encodes a Brahma-Associated Putative Chromatin-Remodeling Factor in Drosophila melanogaster 总被引:3,自引:0,他引:3 下载免费PDF全文
Madeline A. Crosby Chaya Miller Tamar Alon Kellie L. Watson C. Peter Verrijzer Ronit Goldman-Levi Naomi B. Zak 《Molecular and cellular biology》1999,19(2):1159-1170
The genes of the trithorax group (trxG) in Drosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira (mor) and its molecular characterization. mor encodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex. 相似文献
12.
Chang TS Kim MJ Ryoo K Park J Eom SJ Shim J Nakayama KI Nakayama K Tomita M Takahashi K Lee MJ Choi EJ 《The Journal of biological chemistry》2003,278(48):48092-48098
p57KIP2, a member of the Cip/Kip family of enzymes that inhibit several cyclin-dependent kinases, plays a role in many biological events including cell proliferation, differentiation, apoptosis, tumorigenesis and developmental changes. The human p57KIP2 gene is located in chromosome 11p15.5, a region implicated in sporadic cancers and Beckwith-Wiedemann syndrome. We here report that p57KIP2 physically interacts with and inhibits c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK). The carboxyl-terminal QT domain of p57KIP2 is crucial for the inhibition of JNK/SAPK. Overexpressed p57KIP2 also suppressed UV- and MEKK1-induced apoptotic cell death. p57KIP2 expression during C2C12 myoblast differentiation resulted in repression of the JNK activity stimulated by UV light. Furthermore, UV-stimulated JNK1 activity was higher in mouse embryonic fibroblasts derived from p57-/- mice than in the cells from wild-type mice. Taken together, these findings suggest that p57KIP2 modulates stress-activated signaling by functioning as an endogenous inhibitor of JNK/SAPK. 相似文献
13.
Osmoregulation and Fungicide Resistance: the Neurospora crassa os-2 Gene Encodes a HOG1 Mitogen-Activated Protein Kinase Homologue 总被引:3,自引:0,他引:3 下载免费PDF全文
Yan Zhang Randy Lamm Christian Pillonel Stephen Lam Jin-Rong Xu 《Applied microbiology》2002,68(2):532-538
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway. 相似文献
14.
《Cell cycle (Georgetown, Tex.)》2013,12(5):575-577
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum ofcellular processes, including cell growth, differentiation, transformation, and apoptosis.We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couplesstress signaling to G2/M cell cycle progression, CDC2 expression, and cellularsenescence. We further explored other molecules involved in JNK pathway and foundthat both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK,have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNKc-Jun pathway linking stress and developmental signals to cell proliferation, cell cycleprogression, cellular senescence, and apoptosis including recent unpublished data fromour lab. 相似文献
15.
Mixed lineage kinase ZAK utilizing MKK7 and not MKK4 to activate the c-Jun N-terminal kinase and playing a role in the cell arrest 总被引:2,自引:0,他引:2
Yang JJ 《Biochemical and biophysical research communications》2002,297(1):105-110
The leucine-zipper (LZ) and sterile-alpha motif (SAM) kinase (ZAK) belongs to the MAP kinase kinase kinase (MAP3K) when upon over-expression in mammalian cells activates the JNK/SAPK pathway. The mechanisms by which ZAK activity is regulated are not well understood. Co-expression of dominant-negative MKK7 but not MKK4 and ZAK significantly attenuates JNK/SAPK activation. This result suggests that ZAK activates JNK/SAPK mediated by downstream target, MKK7. Expression of ZAK but not kinase-dead ZAK in 10T1/2 cells results in the disruption of actin stress fibers and morphological changes. Therefore, ZAK activity may be involved in actin organization regulation. Expression of wild-type ZAK increases the cell population in the G(2)/M phase of the cell cycle, which may indicate G(2) arrest. Western blot analysis shows that the decreased cyclin E level correlated strongly with the low proliferative capacity of ZAK-expressed cells. 相似文献
16.
Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21(Cip1)-dependent G(1)-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G(1) arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G(1) arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G(1) arrest. 相似文献
17.
18.
19.
Lisa Senzel Paul D. Huynh Karen S. Jakes R. John Collier Alan Finkelstein 《The Journal of general physiology》1998,112(3):317-324
The T domain of diphtheria toxin, which extends from residue 202 to 378, causes the translocation of the catalytic A fragment (residues 1–201) across endosomal membranes and also forms ion-conducting channels in planar phospholipid bilayers. The carboxy terminal 57-amino acid segment (322–378) in the T domain is all that is required to form these channels, but its ability to do so is greatly augmented by the portion of the T domain upstream from this. In this work, we show that in association with channel formation by the T domain, its NH2 terminus, as well as some or all of the adjacent hydrophilic 63 amino acid segment, cross the lipid bilayer. The phenomenon that enabled us to demonstrate that the NH2-terminal region of the T domain was translocated across the membrane was the rapid closure of channels at cis negative voltages when the T domain contained a histidine tag at its NH2 terminus. The inhibition of this effect by trans nickel, and by trans streptavidin when the histidine tag sequence was biotinylated, clearly established that the histidine tag was present on the trans side of the membrane. Furthermore, the inhibition of rapid channel closure by trans trypsin, combined with mutagenesis to localize the trypsin site, indicated that some portion of the 63 amino acid NH2-terminal segment of the T domain was also translocated to the trans side of the membrane. If the NH2 terminus was forced to remain on the cis side, by streptavidin binding to the biotinylated histidine tag sequence, channel formation was severely disrupted. Thus, normal channel formation by the T domain requires that its NH2 terminus be translocated across the membrane from the cis to the trans side, even though the NH2 terminus is >100 residues removed from the channel-forming part of the molecule. 相似文献
20.
The pur7 Gene from the Puromycin Biosynthetic pur Cluster of Streptomyces alboniger Encodes a Nudix Hydrolase 下载免费PDF全文
Pur7 is the product of a gene from the puromycin biosynthetic pur cluster of Streptomyces alboniger. It was expressed in Escherichia coli as a recombinant protein fused to a His tag and then was highly purified through a Ni(2+) column. It showed a 3'-amino-3'-dATP pyrophosphohydrolase (nudix) activity which produced 3'-amino-3'-dAMP and pyrophosphate. This is consistent with the presence of a nudix box in its amino acid sequence. As observed with other nudix hydrolases, Pur7 has an alkaline pH optimum and a requirement for Mg(2+). Among a large variety of other nucleotides tested, only 3'-amino-3'-dTTP was a Pur7 substrate, although at lower reaction rates than 3'-amino-3'-dATP. These findings suggest that Pur7 has a high specificity for the 3' amino group at the ribofuranoside moiety of these two substrates. The K(m) and V(max) values for these dATP and dTTP derivatives were 120 microM and 17 microM/min and 3.45 mM and 12.5 microM/min, respectively. Since it is well known that 3'-amino-3'-dATP is a strong inhibitor of DNA-dependent RNA polymerase, whereas 3'-amino-3'-dAMP is not, Pur7 appears to be similar to other nudix enzymes in terms of being a housecleaning agent that permits puromycin biosynthesis to proceed through nontoxic intermediates. Finally, the identification of this activity has allowed a revision of the previously proposed puromycin biosynthetic pathway. 相似文献