首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallucinogenic agents, phencylidine (Angel's Dust), TCP1 and their morpholine analogs enhanced the activity of guanylate cyclase {E.C.4.6.1.2}, the enzyme that catalyzes the production of guanosine 3′, 5′-monophosphate. This activation of guanylate cyclase by hencyclidine and TCP was observed over the concentration range of .00001 mM to 1 mM, while the morpholine analogs stimulated tha activity of guanylate cyclase in concentration of .0001 mM to 1 mM.  相似文献   

2.
Effect of adenosine on the level of guanosine 3′,5′-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3′,5′-monophosphate in the slices 3–4-fold. Upon removal of adenosine from the medium, the concentration of guanosine 3′,5′-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3′,5′-monophosphate level to the same extent as adenosine, while adenine or other nucleotides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3′,5′-monophosphate in cerebellar slices although level of adenosine 3′,5′-monophosphate was elevated by adenosine.Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3′,5′-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters.The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3′,5′-monophosphate indicating that adenosine increased the level of guanosine 3′,5′-monophosphate by a different mechanism from the depolarization.  相似文献   

3.
The cyclic adenosine 3′,5′-monophosphate (cyclic AMP) phosphodiesterase from human leukemic lymphocytes differes from the normal cell enzyme in having a much higher activity and a loss of inhibition by cyclic guanosine 3′,5′-monophosphate (cyclic GMP). In an effort to determine the mechanism of these alterations, we have studied this enzyme in a model system, lectin-stimulated normal human lymphocytes. Following stimulation of cells with concanavalin A (con A) the enzyme activity gradually becomes altered, until it fully resembles the phosphodiesterase found in leukemic lymphocytes. The changes in the enzyme parallel cell proliferation as measured by increases in thymidine incorporation into DNA. The addition of a guanylate cyclase inhibitor preparation from the bitter melon prevents both the changes in the phosphodiesterase and the thymidine incorporation into DNA. This blockage can be partially reversed by addition of 8-bromo cyclic guanosine 3′,5′-monophosphate (8-bromo cyclic GMP) to the con A-stimulated normal lymphocytes. These results indicate a possible role of cyclic GMP in a growth related alteration of cyclic AMP phosphodiesterase.  相似文献   

4.
D L Vesely  G S Levey 《Enzyme》1978,23(2):140-143
A variety of nitroso chemical carcinogens increase the activity of guanylate cyclase (EC 4.6.1.2), the enzyme catalyzing the production of guanosine 3',5'-monophosphate. In the present report, the first non-nitroso chemical carcinogen, butadiene diepoxide, was shown to activate guanylate in a variety of tissues over the concentration range 1-100 mmol/l. At 20 mmol/l concentration, increases were 2- to 17-fold above control. These observations have potential importance since guanosine 3',5'-monophosphate may be involved in cell growth and malignant transformation.  相似文献   

5.
Guanosine 5′-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 μM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3′, 5′-monophosphate and 5′-guanylylimidodiphosphate (GMP · PNP) also stimulated mammalian adenylate cyclase activity. GMP · PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5′-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The β-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and β-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP. PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to β-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2′-monophosphate, guanosine 3′-monophosphate or guanosine 2′,5′-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.  相似文献   

6.
Hydroxylamine and N-methylhydroxylamine prevented the activation of soluble guanylate cyclase by the endogenous activator as well as by nitroso compounds such as N-methyl-N′-nitro-N-nitroguanidine or nitroprusside, while the other derivaties of hydroxylamine were ineffective. Hydroxylamine and N-methylhydroxylamine did not alter the basal guanylate cyclase activity of purified enzyme preparations. Kinetics analysis indicated that N-methylhydroxylamine competes with N-methyl-N′nitro-N-nitrosuguanidine for guanylate cyclase. The activation of guanylate cyclase by N-methyl-N′-nitro-N-nitrosoguanidine and its inhibition by N-methylhydroxylamine were reversible reactions. These efects of N-methyl-N′-nitro-N-nitrosoguanine and N-methylhydroxylamine were observed with guanylate cyclase from other tissues.N-Methylhydroxylamine preveneed the increase of guanosine 3′,5′-monophosphate (cyclic GMP) levels in cerebellar slices of guinea pig by N-methyl-N′-nitro-N-nitroguanidine, veratridine and adenosine, while the elevalations of adenosine 3′,5′-monophosphate by these agents were not affected. N-Methylhyroxylamine also blocked the increased of cyclic GMP levels by carbachol, prostaglandin E1 and N-methyl-N′-nitro-N-nitrosoguanidine in neuroblastoma N1E 115 cells. Thus N-methylhydroxylamine prevents the activation of guanylate cyclase and the increased synthesis of cyclic GMP in responses to transmitters without blocking the synthesis of cyclic GMP via basal enzyme activity.  相似文献   

7.
Interferon enhances guanylate cyclase activity in human lymphoma cells   总被引:1,自引:0,他引:1  
Treatment of the human Burkitt lymphoma derived cell line Daudi with electrophoretically pure human interferon α caused a rapid increase in the intracellular concentration of guanosine 3′,5′ cyclic-monophosphate (cyclic GMP). This increase was accompanied by an enhancement of guanylate cyclase activity in interferon-treated cells. No change in cyclic GMP phosphodiesterase was observed. However electrophoretically pure human interferon α was without effect on the guanylate cyclase activity of cell-free lysates of Daudi cells. This strongly suggests that the increase in the intracellular concentration of cyclic GMP in interferon treated cells is due to an activation of guanylate cyclase which is mediated via an interaction of interferon with its specific cell surface receptor.  相似文献   

8.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

9.
Changes in the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) during development were studied in the Dipterous Ceratitis capitata. The developmental patterns were different to each other. Cyclic AMP showed a sharp maximum in the larval stage to decrease afterwards during adult development. Changes of cyclic GMP exhibited an opposite pattern, although its levels were always higher than those of cyclic AMP.  相似文献   

10.
Cyclic guanosine 3′,5′-monophosphate (cyclic GMP) stimulates nucleic acid synthesis in lymphocytes, and has been implicated as the intracellular effector of the actions of mitogenic agents on these cells. In the present study, we examined the specificity of the mitogenic activity of cyclic GMP and of its 8-bromo (Br) derivatives, and the effects of the T cell mitogens, concanavalin A, phytohemagglutinin, and staphylococcal entertoxin B (SEB) on the cyclic GMP content and guanylate cyclase activity of mouse splenic lymphocytes. Cyclic GMP and guanosine modestly increased the incorporation of [3H]thymidine into DNA by cultured lymphocytes, but were far less effective than their 8-Br-derivatives. However, on a molar basis the mitogenic activity of both 8-Br-guanosine and 8-Br-5′-GMP exceeded that of 8-Br-cyclic GMP, when tested in the presence and absence of serum in the culture media. Combined addition of maximal doses of these nucleotides did not give additive stimulatory effects, suggesting an action on a common subpopulation of cells, and possibly a common mechanism. By contrast, cyclic AMP, 8-Br-cyclic AMP, 8-Br-adenosine, cholera toxin and prostaglandin E1 suppressed both basal [3]thymidine incorporation and stimulation of this parameter by T-cell line mitogens and the guanosine nucleotides. Rapid effects of concanavalin A, phytohemagglutinin, SEB, guanosine, 5′-GMP, 8-Br-guanosine, and 8-Br-5′-GMP on the cyclic GMP content of murine lymphocytes could not be demonstrated. Similarly, concanalin A, phytohemagglutinin and SEB failed to alter guanylate cyclase activity when added directly to cellular homogenates or pre-incubated with intact cels. Conversely, carbamylcholine rapidly increased lymphocyte cyclic GMP but was not mitogenic.These results are consistent with the hypothesis that cyclic GMP and cyclic AMP are antagonistic in their influence on lymphocyte mitogenesis. However, they also demonstrate that related nucleotides are more potent mitogens than cyclic GMP and suggest that activation of murine lymphocytes by concanavalin A, phytohemagglutinin and SEB may not be mediated by rapid increases in cellular cyclic GMP content. Since high concentrations of exogenous cyclic GMP and related nucleotides must be used to influence DNA synthesis, the biologic significance of this effect remains uncertain.  相似文献   

11.
The effect of locomotor activity on brain regional levels of cyclic guanosine 3′, 5′-monophosphate (cGMP) and cyclic adenosine 3′, 5′-monophosphate (cAMP) was examined in rats trained to run in an activity wheel. Following 5 minutes of running, there was a two-fold elevation over control levels of cerebellar cGMP. Significant elevations were seen in eight other regions. No changes were observed in cAMP. Plasma levels of hormones indicative of stress were not significantly different between groups. We suggest that locomotor activity may contribute to elevations in cGMP in cerebellum and other brain regions in rats exposed to a variety of conditions.  相似文献   

12.
D L Vesely  L E Rovere  G S Levey 《Enzyme》1978,23(5):289-294
The chemical carcinogen hydrazine is a potent stimulator of guanylate cyclase. In the present investigation we found that three chemical carcinogens structurally related to hydrazine, isonicotinic acid hydrazide, hydrazine sulfate, and dimethylhydrazine, decreased guanylate cyclase activity. It is of interest that hydrazine has been shown to increase DNA synthesis whereas isonicotinic acid hydrazide, hydrazine sulfate, and dimethylhydrazine decrease DNA synthesis. The relationship, if any, linking the guanylate cyclase-cyclic GMP system to DNA synthesis and carcinogenesis remains to be explored.  相似文献   

13.
When tested at concentrations producing submaximal responses, the N-nitroso carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (methylnitro-nitrosoguanidine) elicited a 2-fold greater increase in guanosine 3',5'-monophosphate (cyclic GMP) accumulation in slices and a 5-fold greater stimulation of guanylate cyclase activity in whole homogenates of rat liver examined 24 h after 75% hepatectomy compared to the corresponding methylnitro-nitrosoguanidine responses in sham-operated and unoperated controls. Enhanced methylnitro-nitrosoguanidine sensitivity of guanylate cyclase in whole homogenates of regenerating liver was attributable to altered responsiveness of the enzyme activity of the 100 000 X g soluble fraction, which contained 98% of the methylnitro-nitrosoguanidine responsive activity. Basal cyclic GMP accumulation and guanylate cyclase activities of these systems, and their responses to concentrations of methylnitro-nitrosoguanidine eliciting maximal stimulation were unchanged after partial hepatectomy or sham operation, compared to unoperated controls. The findings of (a) increased heme concentrations in the supernatant and the high molecular weight Sephadex G-25 fraction of sham operated, compared to regenerating liver, (b) suppression of methylnitro-nitrosoguanidine responsive activity after addition of exogenous hemoglobin to supernatants from regenerating liver, and (c) enhancement of the responsiveness of soluble guanylate cyclase from sham operated liver to submaximal methylnitro-nitrosoguanidine after reduction of endogenous heme content by in situ perfusion, all suggested that the difference in methylnitro-nitrosoguanidine action observed in control vs. regenerating liver are related to a lower heme-protein content of the latter. These results emphasize the importance of endogenous heme as a factor modulating the response of the hepatic guanylate cyclase system to methylnitro-nitrosoguanidine.  相似文献   

14.
The guanylate cyclase reaction was studied to determine the identity of the product(s) formed other than guanosine-3′,5′-monophosphate (cyclic GMP). Partially purified guanylate cyclase preparations from rat lung catalyzed the formation of nearly equal amounts of PP1 and of cyclic GMP from GTP. Column chromatography of the enzyme preparation on DEAE-Sephadex or Bio-Gel A-5m failed to separate the enzyme(s) involved in formation of cyclic GMP and of PP1. Nucleotide inhibitors of cyclic GMP formation also inhibited PP1 formation, and Ca2+, a stimulant of cyclic GMP formation in the presence of Mn2+, also stimulated PP1 formation. Detectable PP1 formation was not observed when ATP was present instead of GTP.The results show that guanylate cyclase, in vitro, catalyzes the formation of pyrophosphate from GTP concomitant with the synthesis of cyclic GMP.  相似文献   

15.
Abstract

The use of positive ion fast atom bombardment mass-analysed ion kinetic energy (FAB/MIKE) spectroscopy to differentiate the 2′, 3′-and 5′-monophosphate isomers of adenosine, guanosine and cytidine is described.  相似文献   

16.
A protein kinase that catalyzes the phosphorylation of histone was partially purified from rat thymus, and the rate of histone phosphorylation was stimulated three- to fourfold by 1 × 10?6 M adenosine 3′,5′-monophosphate (cyclic AMP). Thymic protein kinase was more active than the enzyme from spleen. Histone fractions f1, f2a, f2b, and f3 were all capable of serving as phosphate acceptors for the thymic protein kinase, and the rate of phosphorylation of each fraction was stimulated by cyclic AMP. The ability of various 3′,5′-mononucleotides to stimulate protein kinase activity was compared. Inosine 3′,5′-monophosphate (cyclic IMP) was the most effective substitute for cyclic AMP. The cellular distribution of cyclic AMP-dependent protein kinase and adenylate cyclase activities in the thymus was determined. Cyclic AMP-dependent protein kinase activity is present in both small thymocytes and residual thymic tissue. The specific activity of protein kinase from residual tissue, both for basal and cyclic AMP-stimulated enzyme, was greater than that of enzyme from small thymocytes. In contrast to this, adenylate cyclase activity is predominately localized in the thymocytes.  相似文献   

17.
The levels of guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase in the larval and pupal tissues of Bombyx mori were estimated. This activity was highest in the fat body of the female pupa. The enzyme showed a significant variation in activity during development of adult in female. Male silkworm gave less significant results. The cGMP-dependent kinase partially purified from the pupa could be activated by a high concentration of adenosine 3′,5′-monophosphate (cAMP) as reported for cGMP-dependent protein kinases from other sources. The nature of the enzyme thus activated and that of the enzyme activated by a low concentration of cGMP were found to be similar in several aspects. This indicates that the intrinsic activity of protein kinase from the silkworm pupa is independent of the kind of cyclic nucleotide as an activator.  相似文献   

18.
The guanosine 3',5'-cyclic monophosphate (cGMP) level in the mouse splenic lymphocytes was increased about 2- to 3-fold by concanavalin A. This increase was completely dependent on the presence of Ca2+ in the medium. Homogenates of mouse splenic lymphocytes contained significant guanylate cyclase [EC 4.6.1.2] activity in both the 105,000 X g (60 min) particulate and supernatant fractions and both fractions required Mn2+ for full activity. Calcium ion (3mM) activated soluble guanylate cyclase 3-fold at a relatively low concentration of Mn2+ (less than 1mM) but inhibited the particulate enzyme slightly at all Mn2+ concentrations tested. Concanavalin A itself did not stimulate either fraction of guanylate cyclase. Thus these results suggest that elevation of the cGMP level in lymphocytes by concanavalin A might be brought about by stimulation of Ca2+ uptake and activation of soluble guanylate cyclase by the latter.  相似文献   

19.
Concentrations of cAMP (cyclic adenosine 3′,5′-monophosphate) and cGMP (cyclic guanosine 3′,5′-monophosphate), in ganglia from the garden snail Helix pomatia, vary considerably over the course of the day. There is a maximum in the concentration of both cyclic nucleotides between 08:00 and 12:00 (lights on 06:00 to 18:00), with the cAMP maximum occurring slightly later than that in cGMP. In addition there can be several smaller maxima in cAMP and cGMP levels; the timing of these can be markedly different from experiment to experiment, with cAMP and cGMP sometimes in and sometimes out of phase with each other. This pattern is observed in Helix which had been activated from the dormant state 4–6 days earlier, but is not present in dormant or in long-active animals. The cyclic nucleotide rhythm can be seen in ganglia maintained in organ culture, and persists for at least 24 hours after removal of the tissue from the animal. There appears to be little change in the level of basal or Na Fstimulated adenylate cyclase activity in Helix ganglia over the course of the day. On the other hand, both cAMP and cGMP phosphodiesterase activities exhibit rhythms which are consistent with the rhythms in cAMP and cGMP concentrations.  相似文献   

20.
The cytokinin activities of adenosine 3′,5′-monophosphate, N6,O2″-dibutyryladenosine 3′,5−'monophosphate, 8-bromoadenosine 3′,5′-monophosphate, N6-(Δ2-isopentenyl)adenosine 3′,5′-monophosphate, and N6-benzyladenosine 3′,5′-monophosphate were determined in the tobacco bioassay and compared with the activities of the corresponding non-cyclic nucleotides, nucleosides and bases of the N6-isopentenyl-substituted, N6-benzyl-substituted, 8-bromo-substituted, and unsubstituted adenine series. In each of these series the cytokinin activities in decreasing order were: bases ⪢ nucleosides ⪖ nucleotides > cyclic nucleotides. All members of the N6-isopentenyl- substituted and N6-benzyl-substituted series were highly active cytokinins, reaching maximum activity at concentrations of 1 μM or less, whereas, as expected, all members of the unmodified adenine series were inactive in the tested concentration ranges of up to 180 and 200 μM for adenosine and adenine, and 40 μM for the adenine nucleotides. Members of the 8-bromo-substituted adenine series were much weaker cytokinins than the N6-substituted adenine derivatives but showed activity in the same sequence starting at a concentration of about 5 μM. Thus, in the cases of 8-bromoadenosine 3′,5′-monophosphate and N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate, both of which have been reported to promote cell division and growth of plant tissues, the cytokinin activity is related to the 8-bromo substituent and to the N6-butyryl substituent, respectively, rather than to the 3′,5′-cyclic monophosphate moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号