首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented for the reversible activation-inactivation of the microsomal ecdysone 20-monooxygenase from fat body of the cotton leafworm, Spodoptera littoralis, in a manner commensurate with reversible changes in its phosphorylation state. The activity of the monooxygenase was higher following preincubation with fluoride (an inhibitor of phosphoprotein phosphatases) than in its absence. Preincubation with alkaline phosphatase or with cAMP-dependent protein kinase resulted in appreciable diminution or enhancement, respectively, in monooxygenase activity. Activation of ecdysone 20-monooxygenase activity could also be effected by incubation with a cytosolic fraction in the presence of cAMP, ATP, and fluoride; this activation was prevented by a cAMP-dependent protein kinase inhibitor. Similarly, inactivation of the monooxygenase was achieved by preincubation with cytosol, the effect being enhanced by Ca2+-calmodulin or by Mg2+ ions. The combined results provide indirect evidence that the microsomal ecdysone 20-monooxygenase exists in an active phosphorylated form and an inactive dephosphorylated form, interconvertible by a cAMP-dependent protein kinase and a phosphoprotein phosphatase.  相似文献   

2.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

3.
The magnesium buffer coefficient (B Mg) was calculated for BC3H-1 cells from the rise in cytosolic Mg2+ activity observed when magnesium was released from ATP after iodoacetate (IAA) and NaCN treatment. The basal cytosolic Mg2+ activity (0.54±0.1 mM) measured with mag-fura-2 doubled when 4.54 mM magnesium was liberated from ATP:B Mg was 12.9 indicating that a 1 mM increase in Mg2+ activity requires an addition of about 13 mM magnesium. The accuracy of this value depends on these assumptions: (a) all of the magnesium released from ATP stayed in the cells; (b) the rise in Mg2+ was not secondary to pH-induced changes inB Mg; (c) mag-fura-2 measured Mg2+ and not Ca2+; and (d) the accuracy of the mag-fura-2 calibration. Total magnesium did not change in response to IAA/CN treatment, thus the change in Mg2+ activity reflected a redistribution of cell magnesium. pH changes induced by NH4Cl pulse and removal had little effect on Mg2+ activity and the changes were slower than and opposite to pH-induced changes in Ca2+ activity measured by fura-2. Ca2+ responses were temporally uncopled from Mg2+ responses when the cells were treated with IAA only and in no cases did Ca2+ levels rise above 1 M, showing that the mag-fura-2 is responding to Mg2+. Additional studies demonstrated that 90% of the mag-fura-2 signal was cytosolic in origin. The remaining non-diffusible mag-fura-2 either was bound to cytosolic membranes or sequestered in organelles with the fluorescence characteristics of the Mg2+-complexed form, even when cytosolic free Mg2+ activity was approximately 0.5 mM. This bound mag-fura-2 would appear to increase the Kd and thus clearly limits the accuracy of our estimmate forB Mg. Despite this limitation, we demonstrate that Mg2+ is tightly regulated in face of large changes in extracellular Mg2+, and that the interplay observed between pH, Ca2+ and Mg2+ activities strongly supports the hypothesis that these factors interact through a shared buffer capacity of the cell.  相似文献   

4.
The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hydroxymethylglutaryl-CoA reductase) was considerably inhibited during incubation with ATP+Mg2+. The inactivated enzyme was reactivated on further incubation with partially purified cytosolic phosphoprotein phosphatase. The inactivation was associated with a decrease in the apparent Km of the reductase for hydroxymethylglutaryl-CoA, and this was reversed on reactivation. The slight increase in activity observed during incubation of microsomal fraction without ATP was not associated with a change in apparent Km and, unlike the effect of the phosphatase, was not inhibited by NaF. Liver microsomal fraction from rats given cholesterol exhibited a low activity of hydroxymethylglutaryl-CoA reductase with a low apparent Km for hydroxymethylglutaryl-CoA. Mícrosomal fraction from rats fed cholestyramine exhibited a high activity with a high Km. To discover whether these changes had resulted from phosphorylation and dephosphorylation of the reductase, microsomal fraction from rats fed the supplemented diets and the standard diet were inactivated with ATP and reactivated with phosphoprotein phosphatase. Inactivation reduced the maximal activity of the reductase in each microsomal preparation and also reduced the apparent Km for hydroxymethylglutaryl-CoA. There was no difference between the preparations in the degree of inactivation produced by ATP. Treatment with phosphatase restored both the maximal activity and the apparent Km of each preparation, but never significantly increased the activity above that observed with untreated microsomal fraction. It is concluded that hydroxymethylglutaryl-CoA reductase in microsomal fraction prepared by standard procedures is almost entirely in the dephosphorylated form, and that the difference in kinetic properties in untreated microsomal fraction from rats fed the three diets cannot be explained by differences in the degree of phosphorylation of the enzyme.  相似文献   

5.
Cytosolic ATP-phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was inhibited by submillimolar concentrations of free Mg2+. The free Mg2+ concentration required for 50% inhibition of PFK activity was 0.22 millimolar. Inhibition by free Mg2+ was independent of the MgATP2− concentration. Inorganic phosphate (Pi) reduces the inhibition of PFK activity by Mg2+. Free ATP (ATP4−) also inhibits PFK activity. For free ATP the inhibition of PFK activity was dependent on the MgATP2− concentration. Fifty percent inhibition of PFK activity requires 1.2 and 3.7 millimolar free ATP at 0.1 and 0.5 millimolar MgATP2−, respectively. It was proposed that free ATP competes for the MgATP2− binding site, whereas free Mg2+ does not. Pi diminished the inhibitory effect of free ATP on PFK activity. Free ATP and Pi had substantial effects on the MgATP2− requirement of cytosolic PFK. For half-maximum saturation of PFK activity 3 and 76 micromolar MgATP2− was required at 0.007 and 0.8 millimolar free ATP in the absence of Pi. At 5 and 25 millimolar Pi, half-maximum saturation was achieved at 9 and 14 micromolar MgATP2−. PFK activity was inhibited by Ca2+. The inhibition by Ca2+ depends upon the total Mg2+ concentration. Fifty percent inhibition of PFK activity required 22 and 32 micromolar Ca2+ at 0.1 and 0.2 millimolar Mg2+, respectively. At physiological concentrations of about 0.5 millimolar free Mg2+, Ca2+ would have little effect on cytosolic PFK activity from spinach leaves. PFK is not absolutely specific for the nucleoside 5′-triphosphate substrate. Besides MgATP2−, MgUTP2−, MgCTP2−, and MgGTP2− could be used as a substrate. All four free nucleotides inhibit PFK activity. The physiological consequences of the regulatory properties of cytosolic PFK from spinach leaves will be discussed. A model will be introduced, in an attempt to describe the complex interaction of PFK with substrates and the effectors Mg2+ and Pi.  相似文献   

6.
the occurrence of a soluble fraction from rat liver that inactivates acetyl-CoA carboxylase was previously reported by this laboratory (1). The purification of this fraction is now reported, and we show that it behaves as a cAMP-independent kinase that inactivates acetyl-CoA carboxylase by phosphorylation. The kinase has a molecular weight of 160,000 and it requires ATP and Mg2+ for activity. A partial purification from rat liver cytosol of a Mg2+-requiring phosphoprotein phosphatase of high molecular weight (greater than 200,000) which dephosphorylates phosphorylated acetyl-CoA carboxylase with the regeneration of enzyme activity is also reported. The kinase, phosphatase, and acetyl-CoA carboxylase are separable from each other by a combination of ammonium sulfate precipitation, DEAE-cellulose chromatography, and gel filtration.  相似文献   

7.
Glycogen phosphorylase in Tetrahymena pyriformis was activated by a Mg2+ ATP-dependent process and this activation was further increased by the addition of cyclic AMP. When the enzyme activity in subcellular fractions was measured, it was largely associated with the glycogen fraction but was no longer activated by ATP and cyclic AMP. Mixing the glycogen fraction and cytosol fraction together restored the effects of ATP and cyclic AMP on phosphorylase activity. These findings suggest that glycogen phosphorylase associated with Tetrahymena glycogen granules may be regulated by cytosolic factor(s) with cyclic AMP.  相似文献   

8.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

9.
Nuclei of rat ventral prostate have been demonstrated to possess a protein phosphatase activity utilizing 32P-labelled, lysine-rich histone (calf thymus) as the phosphoprotein substrate. This phosphatase has a pH optimum of 7.1 and was stimulated by the sulfhydryl protective agents dithiothreitol and 2-mercaptoethanol. This nuclear protein phosphatase did not appear to require divalent cations; rather, small inhibitions of activity were found in the presence of 2.4 mM Mg2+, Mn2+, and Ca2+. Divalent cations such as Zn2+ or Cu2+ were found to be much stronger inhibitors, giving about 80% inhibition at 1 mM. Monovalent cations were also found to inhibit the histone phosphatase, e.g., 43% at 200 mM NaCl. Ammonium molybdate did not influence the enzyme activity whereas ADP and ATP reduced it by 72 and 82% respectively at 1 mM. There was no change in activity of the histone phosphatase up to 96 h post-orchiectomy when specific activity was based per unit of nuclear protein. However, a small decrease is noted if specific activity is expressed per unit of nuclear DNA (19% at 48 h and 36% at 96 h orchiectomy). This difference reflects the decreased nuclear protein content of the prostate observed following castration. Our data suggest that the decline in prostatic nuclear histone phosphorylation observed following orchiectomy is not due to increased phosphatase activity.  相似文献   

10.
Previous work has shown that Mg2+ levels modulate the net level of myosin light chain phosphorylation in bovine aortic smooth muscle actomyosin preparations. The goal of this study was to determine the precise step, i.e. phosphorylation or dephosphorylation, where Mg2+ modulates the net phosphorylation reaction. The technique using [γ35S]ATPγS to monitor the phosphorylating step yielded no effect of either Mg2+ or Ca2+. Unfortunately the lack of Ca2+-dependence did not allow conclusions about the influence of Mg2+ on myosin light chain kinase activity. The study of the effect of Mg2+ on dephosphorylation showed that phosphatase activity in the actomyosin preparation exhibited a Mg2+ modulation only when the actomyosin was previously exposed to activating levels (3×10?5M) of Ca2+, suggesting the presence of a Ca2+ -regulation system for myosin light chain phosphatase.  相似文献   

11.
Summary The hydrolysis of ATP, AMP and glycerophosphate (GP) at alkaline pH in mineralizing bone and teeth of young mice has been studied histochemically. The substrates were visibly hydrolyzed to the same degree in osteoblasts, cells of stratum intermedium, odontoblasts and subodontoblasts at Ca2+ concentrations ranging from 10 mM to 600 mM. In the ameloblasts, however, only ATP was hydrolyzed. The ATPase activities gradually decreased at increasing Mg2+/Ca2+ ratios. The AMPase and GPase activities, on the other hand, were visibly unaffected. Marked cellular staining, including the nuclei was seen with AMP and GP as substrates when only Mg2+ ions were added. No ATPase activity at all could be recorded in media containing Mg2+ but no Ca2+ ions. The different phosphatase activities in cells involved in hard tissue formation were identically affected by preincubations with solutions containing various concentrations of Ca2+ or Mg2+ ions. The ATPase activity in striated muscle fibres and blood vessel walls, however, was affected differently by the same procedure.The results indicate that the phosphatase activities recorded in osteoblasts, cells of stratum intermedium, odontoblasts and subodontoblasts at alkaline pH belong to one single enzyme. The results also imply that CaATP is the preferred substrate in the enzymatic hydrolysis of ATP in hard-tissue-forming cells.  相似文献   

12.
《Insect Biochemistry》1991,21(4):399-405
Na+,K+-activated ATPase activity in tick salivary glands increases during the rapid stage of tick feeding paralleling similar increases in dopamine and cAMP-stimulated fluid secretion. High concentrations of cyclic AMP increase Na+,K+-ATPase activity in a plasma membrane-enriched fraction from the salivary glands of rapidly feeding ticks. Cyclic AMP-dependent protein kinase inhibitor protein blocks activation of Na+,K+-ATPase activity at low but not high concentrations of cAMP indicating that both activator and inhibitor modulator phosphoproteins of Na+,K+-ATPase activity exist in the plasma membrane-enriched fraction.ATPase activity in the plasma membrane-enriched fraction is not measurable in the absence of Mg2+, Ca2+ and Na+. Ca-stimulated nucleotidase activity is highest with ATP serving as the preferred substrate in a series including CTP, UTP, GTP and ADP. Calcium, Mg2+ stimulated ATPase activity is activated further by calmodulin and partially inhibited by low concentration of vanadate, trifluoperazine and oligomycin. Results suggest that the plasma membrane-enriched fraction of tick salivary glands contains both Ca2+-ATPase activity and oligomycin-sensitive Ca2+, Mg2+-ATPase activities, the latter likely from a small amount of mitochondria in the partially purified organelle fraction.  相似文献   

13.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

14.
The existence of an endogenous protein kinase activity and protein phosphatase activity in myelin membrane from mammalian brain has now been well established. We found that under all conditions tested the myelin basic protein is almost the only substrate of the endogenous protein kinase in myelin of bovine brain. The protein kinase activity is stimulated by Ca2+ in the micromolar range. Optimal activity is reached at a free Ca2+ concentration of about 2 μM. Myelin membrane vesicles were prepared and then shown to be sealed by a light-scattering technique. After preloading with 45Ca2+, 86Rb+, or 22Na+, the self-diffusion (passive outflux) of these ions from myelin membrane vesicles was measured. Ionophores induced a rapid, concentration-dependent outflux of 80–90% of the cations, indicating that only a small fraction of the trapped ions was membrane bound. There was no difference in the diffusion rates of the three cations whether phosphorylated (about 1 mol phosphate per myelin basic protein) or non-phosphorylated vesicles were tested. In contrast, a small but significant decrease in permeability for Rb+ and Na+ was measured, when the vesicles were pretreated with ATP and Mg2+.  相似文献   

15.
The properties of membrane-associated ATPase of cucumber (Cucumis sativus cv. Seiriki No. 2) roots cultured in a complete medium (complete enzyme) and in a medium lacking Ca2+ (Ca2+-deficient enzyme) were investigated. The basal activity of membrane-associated ATPase increased during Ca2+ starvation, while Mg2+-activation of the enzyme decreased and even resulted in inhibition by high Mg2+ concentration at the late stage of the Ca2+ starvation. The complete enzyme had low basal activity and showed a Mg2+-activated hyperbolic reaction curve in relation to ATP concentration. Ca2+-deficient enzyme with high basal activity showed a biphasic reaction curve and Mg2+-activation was seen only at high ATP concentrations. Activation of membrane-associated ATPase by various cations was decreased or lost during Ca2+ starvation. The basal ATPase activity of Ca2+-deficient enzyme increased for various substrates including pyrophosphate, p-nitrophenyl phosphate, glucose-6 phosphate, β-glycerophosphate, AMP, ADP and ATP. Mg2+-activation was found only for ADP and ATP in both the complete and Ca2+-deficient enzymes, but the activation for ATP was greatly reduced by Ca2+ starvation. The heat inactivation curves for basal and Mg2+-activated ATPase did not differ much between the complete and Ca2+-deficient enzyme. The delipidation of membrane-associated enzyme by acetone affected the protein content and the basal activity slightly, but inhibited the Mg2+-activated ATPase activity clearly with somewhat different behaviour between the complete and Ca2+-deficient enzyme.  相似文献   

16.
Sterol glucosyltransferase activity was found in a particulate fraction of pea seeds. The activity was stimulated by Ca2+ and Mg2+ and inhibited by Zn2+, Cu2+, Hg2+, EDTA and EGTA. Iodoacetamide was without effect but p-chloromercuribenzoate completely inhibited the enzyme. N -Ethylmaleimide gave 60–70 % inhibition over a wide range of concentrations. The activity was stimulated by ATP in the presence of Mg2+. Under such conditions, steryl acyl glucoside was formed. The acyl derivative was barely detectable in the presence of Ca2+ either with or without ATP. Both oleyl CoA and palmityl CoA stimulated acyl glucoside synthesis. Of the four nucleoside triphosphates, ATP, GTP, UTP and CTP both ATP and CTP stimulated acylation in the presence of Mg2+. The observations suggest that acyl donors other than digalactosyl diglyceride and phospholipids may function in steryl acyl glucoside synthesis in plants.  相似文献   

17.
Mg2+-ATPase activity was identified in the cytosol of human erythrocytes. A partial purification of this activity was achieved by an initial DEAE-Sephadex column chromatography, followed by gel filtration on Sephadex G-100 and then a second DEAE-Sephadex chromatography procedure. The enzyme appeared in the void volume of the Sephadex G-100 column and was retained on an Amicon XM100A ultrafiltration membrane. The molecular weight of the enzyme was estimated to be 113 000 from SDS gels. The above purification protocol yielded an enzyme with an optimal pH between 7.6 and 8.2. The enzyme activity increased linearly between 30 and 44°C. It was stable for several months at −20°C. Magnesium was essential for activity, but the rate attainable with Mn2+ was at least as great as that due to Mg2+. No other divalent cation was able to substitute for Mg2+ or Mn2+. Neither low nor high Ca2+ concentrations significantly affected the enzymatic activity. Substrate specificity studies showed that ATP was the preferred substrate followed by CTP (46% of the rate produced by ATP). Hydrolysis of GTP, UTP, ITP and ADP was less than 10% of the rate seen with ATP. No phosphatase, pyrophosphatase, phosphodiesterase, hexokinase, phosphofructokinase or adenylate cyclase activity could be detected in this enzyme preparation. Calmodulin, which stimulates the (Ca2+ + Mg2+)-ATPase of the human erythrocyte membrane, failed to enhance the Mg2+-ATPase activity. Of considerable interest, the activity of this Mg2+-ATPase was enhanced approximately 5-fold by low concentrations of mercuric ion, p-hydroxymercuribenzoate and DTNB, but was much less sensitive to iodoacetamide.  相似文献   

18.
Mg2+-ATPase activity was identified in the cytosol of human erythrocytes. A partial purification of this activity was achieved by an initial DEAE-Sephadex column chromatography, followed by gel filtration on Sephadex G-100 and then a second DEAE-Sephadex chromatography procedure. The enzyme appeared in the void volume of the Sephadex G-100 column and was retained on an Amicon XM100A ultrafiltration membrane. The molecular weight of the enzyme was estimated to be 113 000 from SDS gels. The above purification protocol yielded an enzyme with an optimal pH between 7.6 and 8.2. The enzyme activity increased linearly between 30 and 44°C. It was stable for several months at ?20°C. Magnesium was essential for activity, but the rate attainable with Mn2+ was at least as great as that due to Mg2+. No other divalent cation was able to substitute for Mg2+ or Mn2+. Neither low nor high Ca2+ concentrations significantly affected the enzymatic activity. Substrate specificity studies showed that ATP was the preferred substrate followed by CTP (46% of the rate produced by ATP). Hydrolysis of GTP, UTP, ITP and ADP was less than 10% of the rate seen with ATP. No phosphatase, pyrophosphatase, phosphodiesterase, hexokinase, phosphofructokinase or adenylate cyclase activity could be detected in this enzyme preparation. Calmodulin, which stimulates the (Ca2+ + Mg2+)-ATPase of the human erythrocyte membrane, failed to enhance the Mg2+-ATPase activity. Of considerable interest, the activity of this Mg2+-ATPase was enhanced approximately 5-fold by low concentrations of mercuric ion, p-hydroxymercuribenzoate and DTNB, but was much less sensitive to iodoacetamide.  相似文献   

19.
A plasma membrane-enriched fraction was prepared from homogenized rat pancreatic islets by a one-step sucrose gradient centrifugation. Using 125I-wheat germ agglutinin as a plasma membrane probe, a fraction was obtained at a sucrose density of about 1.10 that was enriched in 5′-nucleotidase, Mg2+-ATPase and alkaline phosphatase. The fraction contained little, if any, monoamino oxidase activity, insulin or DNA. Hydrolysis of 3-0-methyl-fluoresceinphosphate was stimulated by K+ (10mM) at a pH optimum of pH 8.2. Hydrolysis of ATP-γ-32P in the presence of MgCl2 was of high specific activity and was optimum at pH 7.0 and 8.2. K+ did not affect ATP-hydrolysis. At pH 8.2, a small fraction of the total Mg2+-ATPase activity was inhibited by ouabain in the presence of Na+ and K+. Since K+-stimulated phosphatase activity does not correlate with Mg2+-ATPase, the two assay systems define separate enzymatic processes.  相似文献   

20.
Summary Spontaneous S6 phosphatase activities dephosphorylating Ser(P)-235 and Ser(P)-236 of the ribosomal protein S6 were measured and compared in microsomes and cytosol of rat liver. The substrate used, small (40S) ribosomal subunits 32P-labelled in vitro by protein kinase A, contained phosphorylated S6 (mainly in the dephosphorylated form) and some minor phosphorylated species. The microsomal and cytosolic S6 phosphatase activities displayed a number of distinct properties. The microsomal activity, representing ca 20% of the S6 phosphatase activity in the post-mitochondrial supernatant, was mainly due to a type-1 phosphatase and dephosphorylated only S6. The remaining post-mitochondrial S6 phosphatase activity, which was fully recovered in the cytosol, and appeared to result from a combination of type-1 (43%) and type 2 (57%) phosphatases, acted on S6 as well as on the minor phosphorylated species. The microsomal activity was 50% inhibited by MgCl2 (l0 mM) and was stimulated at least 4.3 fold by MnCl2 (1 mM), while the cytosolic activity was inhibited only 18% by Mg2+ (10 mM) and was increased 2.2 fold by Mn2+ (1 mM). The microsomal activity was increased 10% (P < 0.06) by lower doses of insulin (25 U/Kg) and 14% (P < 0.05) by vanadate, but was not significantly (P > 0.10) affected by larger doses of insulin (100 U/kg), hepatectomy or cycloheximide. By comparison the cytosolic S6 phosphatase activity was unresponsive to insulin and vanadate, but was decreased 14% and 17% (P < 0.05) by hepatectomy and cycloheximide. It is concluded that (i) there. are clear differences between the microsomal and cytosolic S6 phosphatase activities, which may be relevant to their specific functions in the cell, and (ii) the inhibition of cytosolic S6 phosphatase activity by hepatectomy and cycloheximide may contribute to the increase in hepatic S6 phosphorylation induced by these treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号