首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current studies describe a new, robust cell-based functional assay useful to characterize L-type voltage-dependent calcium channels and their antagonists. The basis of this assay is measurement in plate format of Ca2+ influx through the L-type Ca2+ channel complex (alpha1C, alpha2delta, and beta2a subunits) in response to potassium-mediated depolarization; EC(50)=11 mM [K+](o). The Ca2+ influx was inhibited by the L-type Ca2+ channel antagonist, nimodipine; IC(50)=59 nM. These cells were also transfected with the Kir2.3 inward rectifier K(+) channel, which allows for changing the cell membrane potential by modulation of extracellular [K](o); -65 mV in physiological [K](o) and -28 mV in 30 mM [K](o) containing buffer. The conformational state of the voltage-sensitive Ca2+ channel is altered under these different conditions. Under the depolarized condition, nimodipine was a more potent antagonist, inhibiting Ca2+ influx with an IC(50) value of 3 nM. The results demonstrate that the interaction of nimodipine and other antagonists with the channel is modulated by changes in membrane potential and thus the state of the channel. Overall, this novel assay can be used to identify state-dependent calcium channel antagonists and should be useful for evaluating state-dependent inhibitory potency of a large number of samples.  相似文献   

2.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

3.
Jeong JH  Kum C  Choi HJ  Park ES  Sohn UD 《Life sciences》2006,78(13):1407-1412
We investigated an effect of extremely low frequency magnetic field (ELF-MF, 60 Hz) on hyperalgesia using hot plate test. The level of nitric oxide (NO) and the expression of nitric oxide synthase (NOS) were measured to determine if ELF-MF is engaged in NO mediated pain mechanism. Additionally, the involvement of Ca2+-dependent NO pathway in ELF-MF induced hyperalgesia was evaluated by blocking Ca2+ sources with NMDA receptor antagonist and Ca2+ channel blocker. The exposure of mice to ELF-MF lowered pain threshold and elevated NO synthesis in brain and spinal cord. An NOS inhibitor blocked these effects of ELF-MF with attenuating the reduction of pain threshold and the rise of NO level in brain and spine by the exposure of ELF-MF. The hyperalgesic effects of ELF-MF were also blocked by a Ca2+ channel blocker, nimodipine, but not by a NMDA receptor antagonist, MK-801. The expression of Ca2+ -dependent nNOS and eNOS and Ca2+ -independent iNOS were not changed by ELF-MF. These results indicated that the exposure of ELF-MF might cause Ca2+ -dependent NOS activation, which then induces hyperalgesia with the increase in NO synthesis. In conclusion, ELF-MF may produce hyperalgesia by modulating NO synthesis via Ca2+ -dependent NOS.  相似文献   

4.
In this work, we describe the ability of living hemocytes from an insect (Manduca sexta, Lepidoptera) to hydrolyze extracellular ATP. In these intact cells, there was a low level of ATP hydrolysis in the absence of any divalent metal (8.24 +/- 0.94 nmol of Pi/h x 10(6) cells). The ATP hydrolysis was stimulated by MgCl2 and the Mg2+-dependent ecto-ATPase activity was 15.93 +/- 1.74 nmol of Pi/h x 10(6) cells. Both activities were linear with cell density and with time for at least 90 min. The addition of MgCl2 to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.33 mM MgCl2. This stimulatory activity was not observed when Ca2+ replaced Mg2+. The apparent Km values for ATP-4 and Mg-ATP2- were 0.059 and 0.097 mM, respectively. The Mg2+-independent ATPase activity was unaffected by pH in the range between 6.6 and 7.4, in which the cells were viable. However, the Mg2+-dependent ATPase activity was enhanced by an increase of pH. These ecto-ATPase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, sodium fluoride, tartrate, and levamizole. To confirm the observed hydrolytic activities as those of an ecto-ATPase, we used an impermeant inhibitor, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), as well as suramin, an antagonist of P2-purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-independent and the Mg2+-dependent ATPase activities to different extents. Interestingly, lipopolysaccharide, a component of cell walls of gram-negative bacteria that increase hemocyte aggregation and phagocytosis, increased the Mg2+-dependent ecto-ATPase activity in a dose-dependent manner but did not modify the Mg2+-independent ecto-ATPase activity.  相似文献   

5.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

6.
The effects of different bioactive sphingoid molecules on NOS activity of differentiated cerebellar granule cells were investigated by measuring the conversion of [3H]arginine to [3H]citrulline. Cytosolic Ca2+-dependent NOS activity was strongly inhibited in a dose-dependent manner by sphingosine in concentrations of 1-40 microM. This inhibition seems to be peculiar to sphingosine in that ceramide, N-acetylsphingosine, sphingosine-1P, sphinganine and tetradecylamine have no effect on the cytosolic enzyme at the considered concentrations, suggesting that it is the bulk of the sphingosine hydrophilic portion that is critical for cytosolic NOS inhibition. This inhibition of cytosolic NOS is not reversed by increasing the arginine concentration, so a competitive mechanism can be excluded. Instead, increasing the concentrations of calmodulin led to loss of sphingosine inhibition, suggesting that sphingosine interferes with the calmodulin-dependent activation of the enzyme by a competitive mechanism. Sphingosine and related compounds had no effect on the particulate Ca2+-independent NOS activity. The data obtained suggest that sphingosine could be involved in the regulation of NO production in neurons.  相似文献   

7.
In experiments on frog Rana temporaria L. urinary bladder, we investigated localization of NO-synthase (NOS) in urinary bladder slices and measured NOS activity in the suspension of mucosal epithelial cells. Intensive NADPH-diaphorase staining which is widely used as an indicator of NOS activity was found in mucosal epithelium. Almost all mucosal epithelial cells isolated in Ca2+ -free conditions demonstrated positive NADPH-diaphorase reactivity. Direct measurement of NOS activity in suspension of mucosal cells determined by the rate of conversion of L-arginine to L-citrullin showed that the enzyme activity was reduced in absence of external Ca2+ and was inhibited by L-NAME: non-specific NOS inhibitor, and 1400 W: a highly selective iNOS inhibitor (control: 754 +/- 184; L-NAME, 1 mM 329 +/- 87; 1400 W, 20 mM: 547 +/- 25; Ca2+ -free/EDTA: 490 +/- 184 cpm [3H]-citrullin/10(6) cells per 45 min, p < 0.05, n = 7-8). The data obtained demonstrate that frog urinary bladder mucosa epithelial cells provided antidiuretic hormone-induced increase of osmotic water permeability contain nitric oxide synthase. The presence of inducible (iNOS) as well as constitutive isoform(s) revealed in these cells allows to suggest involvement of NOS in intracellular signaling pathways regulated water transport across the epithelium.  相似文献   

8.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

9.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Nitric oxide (NO) is important in the regulation of renal tubular function. We have investigated whether glycated proteins could impair the NO production by examining the effects of Amadori products (AP-BSA) and advanced glycation end products (AGE-BSA) on primary cultures of rabbit proximal tubular epithelial (PTE) cells. Nitric oxide synthase activity was assessed by measurement of the conversion of L-arginine to L-citrulline and by production of NO, after short-term (30 min) or long-term (1 or 3 days) incubation. Short incubations of PTE cells with either 200 microg/ml AP-BSA or 40 microg/ml AGE-BSA significantly decreased NO production. AP-BSA (3000 microg/ml) inhibited the Ca(2+)-dependent NOS activity even though above 50 microg/ml it increased Ca(2+)-independent NOS activity. In contrast, 40 microg/ml AGE-BSA inhibited both isoforms of NOS. Longer incubations with 200 microg/ml AP-BSA or 250 microg/ml AGE-BSA decreased NO release and inhibited Ca(2+)-dependent and -independent NOS activities. APs did not affect NO release by S-nitroso-N-acetyl-penicillamine (SNAP), while 250 microg/ml AGEs decreased it. After 3 days incubation, glycation products had no effect on the NOS cell content. Cell viability and proliferation were not modified under these experimental conditions, suggesting that the fall in NO production was not due to there being fewer cells. These data indicate that APs and AGEs directly inhibit NOS activity, and additionally that AGEs quench released NO. Thus, both types of glycated proteins alter the production of NO by PTE cells and could participate in the renal tubule dysfunction associated with aging and diabetes.  相似文献   

11.
S Diamant  B Avraham  D Atlas 《FEBS letters》1987,219(2):445-450
The possible involvement of phosphoinositides' turnover in the process of neurotransmitter release in the central nervous system (CNS) was studied using rat brain slices and synaptosomes. A depolarizing concentration of potassium chloride (25 mM) induces an 8.6 +/- 0.4% increase of [3H]noradrenaline [( 3H]NA) fractional release in cerebral cortical slices above spontaneous release, and 15 mM KCl induces a 3-fold increase of [3H]NA release in rat brain synaptosomes. Neomycin, an aminoglycoside which binds phosphoinositides, inhibits the potassium-induced release in cortical slices with an IC50 = 0.5 +/- 0.07 mM and with IC50 = 0.2 +/- 0.03 mM in synaptosomes. Veratridine, a veratrum alkaloid which increases membrane permeability to sodium ions and causes depolarization of neuronal cells, induces a net 13.4 +/- 0.3% increase of [3H]NA fractional release above spontaneous release in cortical slices. In analogy to K+ stimulation, neomycin inhibits the veratridine-stimulated release in cortical slices with an IC50 = 0.65 +/- 0.1 mM. It appears that the recycling of phosphoinositides, which is necessary for Ca2+ mobilization, participates in the Ca2+-dependent induced neurotransmitter release in the central nervous system.  相似文献   

12.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

13.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

14.
Autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase converts it from a Ca2(+)-dependent to a Ca2(+)-independent or autonomous kinase, a process that may underlie some long-term enhancement of transient Ca2+ signals. We demonstrate that the neuronal alpha subunit clone expressed in COS-7 cells (alpha-CaM kinase) is sufficient to encode the regulatory phenomena characteristic of the multisubunit kinase isolated from brain. Activity of alpha-CaM kinase is highly dependent on Ca2+/calmodulin. It is converted by autophosphorylation to an enzyme capable of Ca2(+)-independent (autonomous) substrate phosphorylation and autophosphorylation. Using site-directed mutagenesis, we separately eliminate five putative autophosphorylation sites within the regulatory domain and directly examine their individual roles. Ca2+/calmodulin-dependent kinase activity is fully retained by each mutant, but Thr286 is unique among the sites in being indispensable for generation of an autonomous kinase.  相似文献   

15.
This study was done to identify the mechanism of the alpha1-adrenoceptor (AR) mediated negative inotropic effects of phenylephrine (PE) on adult mouse myocardium. As reported by others, we also found that the nonselective alpha1AR agonist PE produced a negative inotropic effect on ventricular strips from adult mice that was inhibited by the alpha1AAR antagonist 5-methylurapidil (5MU) but not by the alpha1BAR antagonist chloroethylclonidine (CEC) or the alpha1DAR antagonist BMY 7378. The selective alpha1AAR agonist A61603 also produced a negative inotropic effect, which was antagonized by 5MU. Phorbol 12,13-dibutyrate (activator of all PKC isoforms) mimicked the negative inotropic responses to PE and A61603. The negative inotropic effects of PE were inhibited by bisindolylmaleimide (inhibitor of all PKC isoforms) but not by G? 6976 (inhibitor of Ca2+-dependent PKC). Rottlerin, an inhibitor of Ca2+-independent PKCdelta, antagonized the negative inotropic effects of PE and A61603. PE and A61603 increased the translocation of PKCdelta, which was prevented by rottlerin. These data suggest that the alpha1AR-mediated negative inotropy on adult mouse myocardium is signaled by Ca2+-independent PKCdelta.  相似文献   

16.
Store-operated channels (SOC) and store-operated Ca2+ entry are known to play a major role in agonist-induced constriction of smooth muscle cells (SMC) in conduit vessels. In microvessels the role of SOC remains uncertain, in as much as voltage-gated L-type Ca2+ (Ca2+L) channels are thought to be fully responsible for agonist-induced Ca2+ influx and vasoconstriction. We present evidence that SOC and their activation via a Ca2+-independent phospholipase A2 (iPLA2)-mediated pathway play a crucial role in agonist-induced constriction of cerebral, mesenteric, and carotid arteries. Intracellular Ca2+ in SMC and intraluminal diameter were measured simultaneously in intact pressurized vessels in vitro. We demonstrated that 1) Ca2+ and contractile responses to phenylephrine (PE) in cerebral and carotid arteries were equally abolished by nimodipine (a Ca2+L) inhibitor) and 2-aminoethyl diphenylborinate (an inhibitor of SOC), suggesting that SOC and Ca2+L channels may be involved in agonist-induced constriction of cerebral arteries, and 2) functional inhibition of iPLA2beta totally inhibited PE-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries, whereas K+-induced Ca2+ influx and vasoconstriction mediated by Ca2+L channels were not affected. Thus iPLA2-dependent activation of SOC is crucial for agonist-induced Ca2+ influx and vasoconstriction in cerebral, mesenteric, and carotid arteries. We propose that, on PE-induced depletion of Ca2+ stores, nonselective SOC are activated via an iPLA2-dependent pathway and may produce a depolarization of SMC, which could trigger a secondary activation of Ca2+L channels and lead to Ca2+ entry and vasoconstriction.  相似文献   

17.
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures.  相似文献   

18.
Isolated and cultured rat liver sinusoidal endothelial cells (LECs) retain the ability to specifically bind 125I-hyaluronan (HA) and internalize it using a coated pit pathway [Biochem J, 257:875-884, 1989]. Here we have determined the effect of Ca+2 on the binding and endocytosis of HA by LECs. 125I-HA binding to intact LECs at 4 degrees C occurred both in the absence (10 mM EGTA) or the presence of physiologic concentrations of Ca+2 (1.8 mM). However, the specific binding of 125I-HA to LECs increased linearly with increasing Ca+2 concentrations. After permeabilization with the nonionic detergent digitonin, the Ca(+2)-independent HA binding activity increased approximately 743%, while the Ca(+2)-dependent binding activity was enhanced only approximately 46%. Therefore, the Ca(+2)-dependent HA binding activity appears not to be intracellular, whereas the Ca(+2)-independent HA receptor is found both inside LECs and on the cell surface. When LECs were allowed to endocytose 125I-HA at 37 degrees C in 10 mM EGTA or in 1.8 mM Ca+2, no differences were seen in the extent or rate of endocytosis. When LECs were allowed to endocytose 125I-HA in the presence of 10 mM Ca+2, the amount of cell-associated radioactivity increased approximately 20-50-fold. However, this additional cell-associated 125I-HA was not sensitive to hyperosmolarity and was removed by washing the cells in 10 mM EGTA at 4 degrees C. Therefore, the Ca(+2)-dependent cell-associated 125I-HA had accumulated on the cell surface and had not been internalized. From these studies we conclude that LECs have at least two types of specific HA binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
N Zurgil  N Zisapel 《FEBS letters》1985,185(2):257-261
Preincubation of intact fetal brain neurons in culture with the phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate) in the presence of calcium, resulted in the enhancement of the depolarization-induced, Ca2+-dependent neurotransmitter release by the cells. This effect was due to a marked decrease in the concentration of extracellular Ca2+ required to provoke the release. The concentration of Ca2+ needed to produce half-maximal release shifted from approx 0.1 mM in the absence of TPA to 0.018 mM in its presence. This activity of TPA was concentration-dependent (half-maximal effect at 4 nM TPA) and was also dependent on the presence of calcium during the preincubation period. The TPA-induced enhancement of the stimulated release was also observed when Ca2+ entry into the depolarized cells was partially inhibited by Co2+. The results suggest that TPA acts synergistically with Ca2+ to activate neuronal component(s) involved in Ca2+-dependent neurosecretion.  相似文献   

20.
Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号