首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It has been derived, that the electrophoretic mobility of a randomly oriented charged cylinder is obtained by adding one-third of the mobility of a cylinder parallel to the field to two-thirds of its mobility perpendicular to the field, when the relaxation effect is neglected.  相似文献   

3.
The functional state of three proteins of different molecular weight (urease, lactate dehydrogenase, and hemoglobin) in the presence of the linear polyelectrolytes poly(allylamine hydrochloride) (PAA) and sodium poly(styrenesulfonate) (PSS) in the dissolved state and of the same polyelectrolytes bound to the surface of microspheres has been investigated. Microspheres were prepared by consecutive absorption of oppositely charged polyelectrolytes so that the outer layer of the shell was PAA for the acidic protein urease, and PSS for the alkaline proteins LDH and hemoglobin. It was shown that the dissolved polyelectrolyte completely inactivates all three proteins within one minute with a slight difference in the time constant. (By Hb inactivation are conventionally meant changes in the heme environment observed from the spectrum in the Soret band.) In the presence of microspheres, the proteins were adsorbed on their surface; in this case, more than 95% of the activity was retained within two hours. The proportion of the protein adsorbed on microspheres accounted for about 98% for urease, 72% for Hb, and 35% for LDH, as determined from the tryptophan fluorescence data. The interaction of hemoglobin with another type of charged colloidal particles, phospholipid vesicles, leads to the destruction of the tertiary structure of the protein, which made itself evident in the optical absorption spectra in the Soret band, as well as the spectra of tryptophan fluorescence and circular dichroism. In this case, according to circular dichroism, the percentage of α-helical structure of Hb was maintained. The differences in the physical and chemical mechanisms of interaction of proteins with these two types of charged colloidal particles that leads to differences in the degree of denaturing effects are discussed.  相似文献   

4.
Surface modification of cationic lipoplexes has been carried out by means of a postgrafting reaction. The original lipoplexes described comprise a cationic lipid, a neutral lipid, poly(ethylene glycol)-cholesterol (with or without a targeting ligand) and DNA. Modifying their surface via a chemical, postgrafting reaction did not alter their size (approximately 100 nm) nor their ability to compact DNA, but did give a reduced zeta potential (approximately 0 mV) to afford surface neutral particles. With the modified lipoplexes nonspecific NIH3T3 cell surface binding in vitro was inhibited. Intravenous injection of the neutralized lipoplexes in mice showed decreased accumulation of the particles in the lung as compared to PEGylated cationic lipoplexes. Tumor targeting was also achieved in vivo by the addition of an RGD-PEG-Cholesterol as a lipid-ligand in the postgrafted lipoplex formulation.  相似文献   

5.
Targeting of colloidal particles to the bone marrow   总被引:6,自引:0,他引:6  
L Illum  S S Davis 《Life sciences》1987,40(16):1553-1560
Since intravenously administered colloidal particles are normally removed efficiently by the reticuloendothelial cells of the liver and spleen only a small fraction of these particles will reach the bone marrow. By coating model microspheres with a block co-polymer (poloxamer 407) it has been possible effectively to hinder the liver/spleen uptake and obtain a deposition of the microspheres primarily in the bone marrow. Such a carrier system will have application in radiodiagnosis and for treatment of various diseases in the bone marrow.  相似文献   

6.
Electrorotation and levitation of cells and colloidal particles   总被引:2,自引:2,他引:2       下载免费PDF全文
We review dielectrophoretic forces on cells and colloidal particles, emphasizing their use for manipulating and characterizing the electrical properties of suspended particles. Compared with dielectric spectroscopy, these methods offer a measure of independence from electrode artifacts and mixture theory. On the assumption that the particles can be modeled as uniform dielectric objects with effective dielectric properties, a simple theory can be developed for the frequency variation in the field-induced forces. For particles exhibiting counterion polarization, dielectrophoretic forces differ considerably from predictions of this theory at low frequencies, apparently because of double layer phenomena.  相似文献   

7.
Solid core liposomes with encapsulated colloidal gold particles were prepared through four major steps: Preparation of prevesicles with encapsulated solid cores of agarose-gelatin by emulsification of agarose-gelatin sol in organic solvent containing emulsifiers followed by cooling. Extraction of lipophilic components from prevesicles to obtain microspherules of agarose-gelatin. Introducing colloidal gold particles into microspherules and coating with protein molecules. Encapsulation of colloidal gold-bearing microspherules with the modified organic solvent spherule evaporation method for preparation of liposomes (Kim et al. (1983) Biochim. Biophys. Acta 728, 339-348 and Kim et al. (1984) Biochim. Biophys. Acta 812, 793-801). Electron micrographs showed that if liposomes were prepared by using a lipid mixture containing dioleoylphosphatidylcholine/cholesterol/dioleoylphosphatidylglycerol/tri olein (molar ratio 4.5:4.5:1:1), there was only a single continuous bilayer membrane for each solid core liposome. However, if no triolein was added to the lipid mixture, it would cause the formation of multilamellar liposomes. In both cases, there were hundreds to thousands of colloidal gold particles within each solid core liposome.  相似文献   

8.
This study presents a small-scale polymerization of high molecular weight methyl methacrylate/n-butyl acrylate (MMA/n-BA) colloidal particles that are synthesized in an aqueous environment in the presence of phospholipid hydrogenated soybean phosphatidylcholine (HSPC) molecules that also serve as the particle stabilizing agents. When such particles coalesce to form polymeric films, they release phospholipids, which, in turn, form organized structures near the film-air (F-A) interface. Diffusion and mobility of phospholipid molecules are affected not only by their compatibility with colloidal particles but also by electrolyte environments of colloidal dispersions. When Na(+), K(+), and Ca(2+) counterions are added to MMA/n-BA aqueous colloidal dispersions stabilized with HSPC, and such films are coalesced, different degrees of diffusion of HSPC to the F-A interface exist, depending on the counterion, and conformational changes of HSPC result. For example, in the presence of Ca(2+), HSPC molecules collapse entropically to form random surface layers, as opposed to smaller Na(+) and K(+), which force amphiphilic HSPC ends to align preferentially parallel to the film surface. These studies show that it is possible to design stimuli-response colloidal systems triggered by chemical environments of active molecules on colloidal polymer particles.  相似文献   

9.
The interaction of cellulose layers with colloidal silica particles was investigated by direct force measurements with the atomic force microscope (AFM). Upon approach, repulsive forces were found between the negatively charged silica particles and the cellulose surface. The forces were interpreted quantitatively in terms of electrostatic interactions due to overlap of diffuse layers originating from negatively charged carboxylic groups on the cellulose surface. The diffuse layer charge density of cellulose was estimated to be 0.80 mC/m2 at pH 9.5 and 0.21 mC/m2 at pH 4. The forces upon retraction are characterized by molecular adhesion events, whereby individual cellulose chains desorb from the probe surface. The retraction profiles are dominated by well-defined force plateaus, which correspond to single-chain desorption forces of 35-42 pN. We surmise that adsorption of cellulose to probe surfaces is dominated by nonelectrostatic forces, probably originating from hydrogen bonding. Electrostatic contributions to desorption force could be detected only at high pH, where the silica surface is highly charged.  相似文献   

10.
Summary The present paper demonstrates that colloidal gold silver-enhanced by autometallography (AMG) can be used to label phagocytic cells for light microscopic detection. Cultured macrophages were exposed to 0.5 l 6 nm colloidal gold particles for 24 or 48 h. Other cultures were exposed to 25 l of the same solution for 1 to 14 days. The staining was found to be stable also when new unmarked cells were applied. The colloidal gold had no adverse effect on the cells. The presented technique might also prove valuable for estimation of the total number of phagocytes in a culture or in an organism by applying labelled cells to culture or organism, and to ascertain the fate of a population of marked cells.  相似文献   

11.
Summary A new method is reported for the preparation of colloidal gold particles with diameters ranging between 5 and 12 nm. The initial gold particle population, with an average diameter of 5.6±0.9 nm, is prepared by reduction of chloroauric acid with white phosphorous. An increase in particle diameter by growth is obtained by reduction of chloroauric acid with white phosphorous in the presence of colloidal gold particles. The labelling efficiency of these gold particles, conjugated with protein A, in indirect immunolabelling experiments is investigated by labelling of -galactosidase on ultrathin cryosections of Escherichia coli cells. We demonstrate that the labelling efficiency is at least dependent on particle diameter, probe concentration and preparation method. In addition it is shown, that with this new method, gold particle populations can be prepared with minor overlap in diameter spreading. Therefore these gold probes are suitable for qualitative double labelling experiments. The quantitative aspect of immunolabelling is discussed.  相似文献   

12.
不同粒径红壤胶体颗粒对DNA的吸附特性   总被引:1,自引:0,他引:1  
采用平衡法研究了含有机质粗粘粒、去有机质粗粘粒、含有机质细粘粒和去有机质细粘粒4种红壤胶粒对DNA的吸附特征及其热力学特性.结果表明: 4种红壤胶粒对DNA的吸附是快反应过程,Langmuir吸附方程可较好地描述4种红壤胶体对DNA的等温吸附,相应拟合的相关系数r2分别为0.974、0.991、0.958和0.975.最大吸附量表现为含有机质细粘粒>去有机质细粘粒>含有机质粗粘粒>去有机质粗粘粒.电解质浓度和种类及吸附体系pH是影响红壤胶体对DNA吸附的重要因子,一定电解质浓度范围(NaCl<60 mmol·L-1,CaCl2<10 mmol·L-1)内,DNA在红壤胶体表面的吸附量随电解质浓度的增大而显著增加,其中钙离子的促进作用大于钠离子,但随着吸附体系pH的上升而显著降低.含有机质胶粒对DNA的吸附过程是吸热反应,而去有机质胶粒对DNA的吸附过程是放热反应,红壤胶粒对DNA的吸附反应过程是一个熵增过程.  相似文献   

13.
H Maier 《Biophysical journal》1997,73(3):1617-1626
The importance of surface conductivity to the frequency-dependent polarizability and the rotation of particles in circular electric fields (electrorotation) is emphasized by various theoretical and experimental investigations. Although surface conductivity seems to be naturally related to the ionic double layer, there is rare experimental evidence of a direct relationship. To highlight the role of surface charges in electrorotation, an apparatus was developed with a symmetrical three-electrode arrangement for field frequencies between 25 Hz and 80 MHz. The three-dimensional electrostatic field distribution between the electrodes was evaluated numerically. With this device, rotating, gradient, and homogeneous electric fields of defined precision and homogeneity could be applied to slightly conducting suspensions. Surface properties of monodisperse latex particles (O 9.67 microm), carrying weak acid groups, were characterized by suspension conductometric titration. This procedure determined the amount of carboxyl groups and showed that strong acid groups were missing on the surface of these particles. To obtain the electrophoretic mobility, the spheres were separated by free-flow electrophoresis, and the zeta-potential was calculated from these data. Single-particle rotation experiments on fractions of specified electrophoretic mobility were carried out at frequencies between 25 Hz and 20 MHz. By analyzing the pH dependence of the rotation velocity, it could be shown that the rotation rate is determined by surface charges, both at the peak in rotation rate near the Maxwell-Wagner frequency (MWF) and at low frequencies. The inversion of the rotation direction at the MWF peak for vanishing surface charges was demonstrated. An analytical model for the double layer and dissociation on a charged surface was developed that is valid for low and high zeta-potentials. This model could provide convincing evidence of the linear dependence of the MWF rotation velocity on surface charge.  相似文献   

14.
Plasmon resonant particles for biological detection   总被引:5,自引:0,他引:5  
Several recent advances in the optical observation, fabrication, and bioconjugation of nanometer-sized gold or silver colloids have produced a robust new class of label. These plasmon resonant particle (PRP) conjugates have several important advantages: they are ultra-bright, so the light scattered from the individual particles can be viewed using a simple optical microscope system with a white light illumination source; they do not photo-bleach; PRPs can be prepared that preferentially scatter light of a chosen color; and it is possible to prepare bioconjugated PRPs that are stable in solution. These properties, and the automation of PRP identification, discrimination, and counting, have enabled the development of ultrasensitive, multicolor, and multiplex applications in the life science field.  相似文献   

15.
16.
Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study was designed to determine the transport of subcutaneously injected viral-size colloid particles into the lymph and the vascular system in the hind leg of the dog. Transport of two colloid particles, with average size approximately 1 and 0.41 microm, respectively, and with and without leg rotation, was tested. Leg rotation serves to enhance the lymph flow rates. The right femoral vein, lymph vessel, and left femoral artery were cannulated while the animal was under anesthesia, and samples were collected at regular intervals after subcutaneous injection of the particles at the right knee level. The number of particles in the samples were counted under fluorescence microscopy by using a hemocytometer. With and without leg rotation, both particle sets were rapidly taken up into the venous blood and into the lymph fluid. The number of particles carried away from the injection site within the first 5 min was <5% of the injected pool. Particles were also seen in arterial blood samples; this suggests reflow and a prolonged residence time in the blood. These results show that particles the size of viruses are rapidly taken up into the lymphatics and blood vessels after subcutaneous deposition.  相似文献   

18.
The present paper demonstrates that colloidal gold silver-enhanced by autometallography (AMG) can be used to label phagocytic cells for light microscopic detection. Cultured macrophages were exposed to 0.5 microliters 6 nm colloidal gold particles for 24 or 48 h. Other cultures were exposed to 25 microliters of the same solution for 1 to 14 days. The staining was found to be stable also when new unmarked cells were applied. The colloidal gold had no adverse effect on the cells. The presented technique might also prove valuable for estimation of the total number of phagocytes in a culture or in an organism by applying labelled cells to culture or organism, and to ascertain the fate of a population of marked cells.  相似文献   

19.
20.
Large quantities of colloidal particles were rapidly transported around the junctional complex into the lateral intercellular spaces by flounder renal epithelial cells. Large invaginations containing particles developed in the apical cytoplasm of cells when tracer particles were injected into the tubular lumens. Some membranebounded profiles containing particles appeared close to the lateral intercellular spaces. Particles were then found in the lateral intercellular spaces, between the basal plasmalemma and the basement membrane, and within the basement membrane. It is suggested that this transport might operate in situ and provide a morphological mechanism to explain a type of protein transport noted in the renal tubules of another flounder species by Maack and Kinter ('67). It is interesting to consider that perhaps a similar mechanism for the transport of intact proteins might also operate in mammalian nephrons as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号