首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internucleosomal cleavage of genomic DNA is the biochemical hallmark of apoptosis. DNase gamma, a Ca(2+)/Mg(2+)-dependent endonuclease, has been suggested to be one of the apoptotic endonucleases. We identified here 4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396) as a novel and potent DNase gamma inhibitor using stable HeLa S3 transfectants of DNase gamma (HeLa-gamma cells). DR396 inhibited apoptotic DNA fragmentation in HeLa-gamma cells induced by staurosporine (STS) and in rat splenocytes exposed to gamma-ray irradiation in a dose-dependent manner. This compound potently and selectively inhibited DNase gamma activity with an IC(50) value of 3.2 microM. DR396 did not delay the apoptotic processes as judged by the morphological changes and the cleavage of a death substrate, poly(ADP-ribose) polymerase (PARP). Furthermore, the compound did not prevent apoptotic DNA fragmentation in Jurkat cells induced by anti-Fas antibody (Ab), which is catalyzed by caspase-activated DNase (CAD). These findings clearly indicate that DR396 exerts chemical knockdown effect of DNase gamma on cells, suggesting that the compound could be an attractive tool for understanding of the physiological significance of DNase gamma.  相似文献   

2.
3.
Here we review the different apoptotic DNases. From a functional point of view, DNases implicated in apoptosis may be classified into three groups: the Ca2+/Mg2+ endonucleases, the Mg2+-endonucleases, and the cation-independent endonucleases. The first group includes DNase I which has no specificity for the linker region, DNase gamma which has some homology with DNase I, and other DNases which cleave DNA in the linker region. Both DNase I and DNase gamma have been cloned. The other nucleases of this category have dispersed molecular weights. Their sequences are unknown and it is difficult to determine their role(s) in apoptosis. It seems that different pathways are present and that these nucleases may be activated either by caspases or serine proteases. The caspase 3 activated DNase (CAD, CPAN, or DFF40) belongs to the Mg2+-dependent endonucleases. DNase II belongs to the third group of acid endonucleases or cation-independent DNases. We have shown the involvement of DNase II in lens cell differentiation. Recently, the molecular structure of two different enzymes has been elucidated, one of which has a signal peptide and appears to be secreted. The other, called L-DNase II, is an intracellular protein having two enzymatic activities; in its native form, it is an anti-protease, and after posttranslational modification, it becomes a nuclease.  相似文献   

4.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

5.
6.
Shiokawa D  Tanuma S 《Biochemistry》2001,40(1):143-152
We describe here the characterization of the so far identified human DNase I family DNases, DNase I, DNase X, DNase gamma, and DNAS1L2. The DNase I family genes are found to be expressed with different tissue specificities and suggested to play unique physiological roles. All the recombinant DNases are shown to be Ca(2+)/Mg(2+)-dependent endonucleases and catalyze DNA hydrolysis to produce 3'-OH/5'-P ends. High activities for DNase I, DNase X, and DNase gamma are observed under neutral conditions, whereas DNAS1L2 shows its maximum activity at acidic pH. These enzymes have also some other peculiarities: different sensitivities to G-actin, aurintricarboxylic acid, and metal ions are observed. Using a transient expression system in HeLa S3 cells, the possible involvement of the DNases in apoptosis was examined. The ectopic expression of each DNase has no toxic effect on the host cells; however, extensive DNA fragmentation is observed only in DNase gamma-transfected cells after the induction of apoptosis. Furthermore, DNase gamma is revealed to be located at the perinuclear region in living cells, and to translocate into the nucleus during apoptosis. Our results demonstrate that DNase I, DNase X, DNase gamma, and DNAS1L2 have similar but unique endonuclease activities, and that among DNase I family DNases, DNase gamma is capable of producing apoptotic DNA fragmentation in mammalian cells.  相似文献   

7.
We recently found that two apoptotic DNase γ-like endonucleases (36 and 38kDa DNases) were present in Xenopus laevis larval and adult liver cell nuclei and that their activities increased in metamorphic climax. Here, we purified the main DNase γ-like endonuclease from Xenopus laevis liver cell nuclei and characterized its physical and enzymatic properties in detail. The molecular mass of Xenopus liver nuclear endonuclease was 38,000 daltons as determined by SDS-polyacrylamide gel electrophoresis. A native molecular mass of 35,000 was estimated by gel filtration. The purified Xenopus liver endonuclease was a neutral one and required both Ca2+ and Mg2+ for DNase activity. Unlike the mammalian DNase γ, the Ca2+/Mg2+ requirement could not be supplied by Mn2+. The inhibition profiles by aurintricarboxylic acid, sodium citrate and divalent metal ions such as Co2+, Ni2+, Cu2+ and Zn2+ were similar to those of mammalian DNase γ. These results suggest that this endonuclease is a Xenopus laevis homolog of the mammalian apoptotic endonuclease DNase γ. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Ca2+/Mg(2+)-dependent endonuclease has been implicated in the extensive internucleosomal DNA fragmentation that accompanies apoptosis (gene-directed cell death). We present further evidence that this enzyme is involved in apoptosis. Ca2+/Mg2+ nuclease activity was increased about 6-fold during colchicine-induced apoptosis in human chronic lymphocytic leukaemia cells. The increase in activity coincided with onset of DNA fragmentation. Spleen, liver, kidney and thymus expressed high levels of this enzyme while lung, brain, heart and testis contained little activity. Cells from tissues with high Ca2+/Mg2+ nuclease activity underwent rapid DNA fragmentation in response to a Ca2+ flux. Physiological concentrations of Zn2+ known to inhibit both apoptosis and DNA fragmentation also inhibited Ca2+/Mg2+ nuclease activity.  相似文献   

9.
In order to determine the ratio of activities of major endonucleases of rat liver chromatin, a stepwise fractionation of cell nuclear extracts by chromatography on phosphocellulose and gel filtration through Toyopearl HW60 was carried out. This procedure resulted in partially purified preparations of Ca2+,Mg2+-dependent endonuclease (55 +/- 10 kD), Ca2+,Mg2+-dependent endonuclease (30 +/- 10 kD), Mn2+-dependent endonuclease (30 +/- 5 kD) and acid cation-independent endonuclease. The Ca2+,Mg2+-dependent endonuclease with Mr of 55 +/- 10 kD made up to 57% of the nuclear extract activity in the presence of Ca2+ + Mg2+ and revealed a high calcium-magnesium synergism. Under the same experimental conditions, the 30 +/- 10 kD enzyme made up to 33% of the nuclear extract activity and revealed a low synergism. The activity of Mn2+-dependent endonuclease made up to 26% of the total nuclear extract activity in the presence of Mn2+, that of acid endonuclease--11% of the extract activity in 1 mM EDTA at pH 5.0. It was assumed that the low molecular weight Ca2+,Mg2+-dependent endonuclease represents a product of limited proteolysis of high molecular weight Ca2+,Mg2+-dependent endonuclease.  相似文献   

10.
Here we report the co-factor requirements for DNA fragmentation factor (DFF) endonuclease and characterize its cleavage sites on naked DNA and chromatin substrates. The endonuclease exhibits a pH optimum of 7.5, requires Mg(2+), not Ca(2+), and is inhibited by Zn(2+). The enzyme generates blunt ends or ends with 1-base 5'-overhangs possessing 5'-phosphate and 3'-hydroxyl groups and is specific for double- and not single-stranded DNA or RNA. DFF endonuclease has a moderately greater sequence preference than micrococcal nuclease or DNase I, and the sites attacked possess a dyad axis of symmetry with respect to purine and pyrimidine content. Using HeLa cell nuclei or chromatin reconstituted on a 5 S rRNA gene tandem array, we prove that the enzyme attacks chromatin in the internucleosomal linker, generating oligonucleosomal DNA ladders sharper than those created by micrococcal nuclease. Histone H1, high mobility group-1, and topoisomerase II activate DFF endonuclease activity on naked DNA substrates but much less so on chromatin substrates. We conclude that DFF is a useful reagent for chromatin research.  相似文献   

11.
The physiological and pathological importance of cell death by apoptosis has recently been recognized. One of the hallmarks of apoptosis is the enzymatic cleavage of genomic DNA into nucleosomal oligomers. The identification of an endonuclease responsible for apoptosis might help to explain how this cell suicide is regulated and why DNA is cleaved. Here, we found that γ type of DNase was retained in apoptotic rat thymocyte nuclei. Homogeneously purified DNase γ (Mr = 33 kDa) from the apoptotic nuclei was revealed to be a Ca2+/Mg2+-dependent endonuclease and inhibited by Zn2+. This enzyme cleaved chromosomal DNA with 3′-hydroxyl (OH) and 5′-phosphoryl (P) ends. The cleavage ends and its divalent cation dependencies match those observed in apoptotic thymocytes induced by X-irradiation or glucocorticoid treatment, indicating that this endonuclease is a central component of the thymic apoptosis machinery.  相似文献   

12.
The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.  相似文献   

13.
When thymocytes were cultured with adenosine, deoxyadenosine, or deoxyguanosine at 1 mM for 24 h, DNA cleavage at internucleosomal sites with multiples of approximately 180 bp was induced, followed by lactate dehydrogenase release into the medium. In the presence of coformycin, an adenosine deaminase inhibitor, or formycin B, a purine nucleoside phosphorylase inhibitor, DNA cleavage was induced by these nucleosides at concentrations of less than 50 microM. Other purine and pyrimidine ribo- and deoxyribonucleosides did not induce DNA cleavage or LDH release. Because thymocyte nuclei contain a Ca2+,Mg2+-dependent endonuclease, which preferentially cuts DNA in its linker regions, DNA fragmentation induced by the three purine nucleosides was suggested to occur through increased activity of the endonuclease. The DNA cleavage induced by the nucleosides required protein phosphorylation and synthesis, inasmuch as it was inhibited by an inhibitor of protein kinases, H-7, and by an inhibitor of protein synthesis, cycloheximide. The inhibition of DNA cleavage was accompanied by a reduction in lactate dehydrogenase release, suggesting a causal relationship between DNA cleavage and cell death. The DNA cleavage and subsequent cell lysis might be related to the selective thymocyte deletion observed in patients with adenosine deaminase or purine nucleoside phosphorylase deficiency.  相似文献   

14.
Calcium-activated DNA fragmentation kills immature thymocytes   总被引:41,自引:0,他引:41  
Glucocorticoid hormones kill immature thymocytes by activating a self-destructive process that involves extensive DNA fragmentation. It has been demonstrated that thymocyte suicide is dependent on an early, sustained increase in cytosolic Ca2+ concentration, and new protein synthesis, but the biochemical lesion that leads to cell death has not been established. To determine whether endonuclease activation or activation of another Ca2+-dependent process could mediate cell killing, we treated thymocytes with the glucocorticoid methylprednisolone in the presence of inhibitors of various Ca2+-dependent degradative enzymes. The role of poly(ADP-ribose) polymerase, an enzyme known to be activated by DNA damage, was also assessed. Glucocorticoid-induced chromatin cleavage and cell killing were blocked by the endonuclease inhibitor aurintricarboxylic acid, whereas inhibitors of other Ca2+-dependent degradative processes or of poly(ADP-ribose) polymerase did not abrogate cell death. In addition, stimulation of thymocyte DNA fragmentation by the Ca2+ ionophore A23187 resulted in cell killing that could be blocked by the endonuclease inhibitor. Together, our results suggest that thymocyte suicide is caused by extensive Ca2+-stimulated DNA fragmentation.  相似文献   

15.
We have reported the existence in rat nuclear extracts of a specific cleavage activity on a DNA fragment containing the human minisatellite MsH42 region (minisatellite plus its flanking sequences). Here, we have developed a system to analyse the nature of the cleavage products from the MsH42 region generated by the nuclear extracts. Our results demonstrated the formation of DNA double-strand breaks (DSB) in the MsH42 region by two different enzymatic activities, and that their distribution along this fragment changes depending on the presence of Mg2+. In the assays with Mg2+, the DSB were located in the minisatellite and its 3'-flanking region, showing preference for G-rich stretches. Oligonucleotide mutagenesis analysis confirmed that this enzymatic activity has a strong preference for G-tracts and that the recognition site is polarized towards the 3' end. Moreover, this activity cuts GC palindromes efficiently. In contrast, in the experiments without Mg2+, most DSB were mapped within the minisatellite flanking sequences. The analysis with oligonucleotides showed that G-tracts are recognized by this endonuclease activity, but with differences in the cleavage behaviour with respect to the reactions observed with Mg2+. The existence of two separate activities (Mg2+-dependent and Mg2+-independent) for the production of DSB was confirmed by analysing the effect of EGTA, N-ethyl maleimide, ionic strength, and by preincubations of the nuclear extracts at different temperatures. The tissue distribution of both DSB-producing activities was also different. The in vitro system used in the present work may be a useful tool for studying the formation of DSB and for investigation of the mechanisms of DNA repair.  相似文献   

16.
Internucleosomal DNA cleavage is the key molecular event of the cytolytic phase of glucocorticoid-induced lymphocytolysis. We find that novobiocin, the topoisomerase II inhibitor, is a potent inducer of in vivo internucleosomal DNA cleavage in human CEM lymphocytes. This in vivo effect is very rapid, time- and dose-dependent, requires cellular integrity, and does not require de novo protein synthesis. Recently our data (Alnemri, E. S., and Litwack, G. (1989) J. Biol. Chem. 264, 4104-4111) suggested that activation of DNA cleavage in CEM-C7 lymphocytes by glucocorticoids is independent of calcium uptake. Similarly, the novobiocin effect is also independent of calcium uptake and does not occur in isolated CEM nuclei or in CEM cells treated previously with the divalent cation ionophore A23187. Internucleosomal DNA cleavage induced by novobiocin or glucocorticoid generates blunt-ended double-stranded DNA fragments possessing 3'-hydroxyls and 5'-phosphates. As demonstrated by gel retardation analysis and DNase I footprinting, novobiocin causes the disruption and unfolding of an in vitro reconstituted mononucleosome so that it becomes more susceptible to DNase I cleavage. Our data suggest that 1) novobiocin rapid activation of internucleosomal DNA cleavage and chromatin changes in CEM lymphocytes are molecular features of apoptosis or programmed cell death. 2) CEM lymphocytes apparently do not express a Ca2(+)-dependent endonuclease. 3) The mechanism(s) of glucocorticoid or novobiocin-induced DNA cleavage in CEM lymphocytes involves activation of a constitutive non Ca2(+)-dependent endonuclease. We propose that the majority of nuclear chromatin is maintained in a highly compact and charge-neutralized state and that disruption of this highly ordered structure, directly by novobiocin or indirectly by glucocorticoid, may lead to the exposure and unmasking of internucleosomal linker DNA regions which are substrates for a constitutive non-Ca2(+)-dependent endonuclease.  相似文献   

17.
Apoptosisorprogrammedcelldeath(PCD)isaprocessofcelldeletionwhichoccursinresponsetoanumberofcytotoxicandphysiologicallyrelevantstimuli.Thisprocessischaracterizedbyseveralearlymorphologicalterationsincludingplasmaandnuclearmembraneblebbing.Endogenousendo…  相似文献   

18.
Apoptosis is commonly associated with DNA digestion, but it remains controversial as to which endonuclease is involved. The ability of zinc to inhibit DNA digestion in intact cells, and inhibit a Ca2+/Mg2+-dependent endonuclease in cell lysates, has been used frequently to suggest this is the endonuclease involved. However, zinc has many other effects on cells, and here it is shown that zinc also prevents many upstream events in apoptosis. These studies were performed in human ML-1 cells following incubation with etoposide. During apoptosis, these cells undergo intracellular acidification, increased accumulation of Hoechst 33342, DNA digestion and chromatin condensation. Zinc inhibited all of these events. An upstream event in apoptosis is activation of ICE/CED-3 proteases which is commonly observed as proteolysis of a substrate protein, poly(ADP-ribose) polymerase (PARP). The ICE/CED-3 proteases are themselves activated by proteolysis, and this was detected here by cleavage of one family member CPP32. Zinc prevented cleavage of both CPP32 and PARP. We recently demonstrated that dephosphorylation of the retinoblastoma susceptibility protein Rb was a marker of an event even further upstream in apoptosis; zinc was also found to inhibit Rb dephosphorylation. Therefore, zinc must protect cells at a very early step in the apoptotic pathway, and not as a direct inhibitor of an endonuclease.  相似文献   

19.
The activation of endonucleases resulting in the degradation of genomic DNA is one of the most characteristic changes in apoptosis. Here, we report the characterization of a novel endonuclease, termed DNase X due to its X-chromosomal localization. The active nuclease is a 35 kDa protein with 39% identity to DNase I. When incubated with isolated nuclei, recombinant DNase X was capable of triggering DNA degradation at internucleosomal sites. Similarly to DNase I, the nuclease activity of DNase X was dependent on Ca(2+) and Mg(2+) and inhibited by Zn(2+) ions or chelators of bivalent cations. Overexpression of DNase X caused internucleosomal DNA degradation and induction of cell death associated with increased caspase activation. Despite the presence of two potential caspase cleavage sites, DNase X was processed neither in vitro nor in vivo by different caspases. Interestingly, after initiation of apoptosis DNase X was translocated from the cytoplasm to the nuclear compartment and aggregated as a detergent-insoluble complex. Abundant expression of DNase X mRNA was detected in heart and skeletal muscle cells, suggesting that DNase X may be involved in apoptotic or other biological events in muscle tissues.  相似文献   

20.
An Mg2(+)-dependent endonuclease endogenous to rat-liver nuclei had an exonuclease activity for single-stranded DNA, but not for duplex DNA. The activity was about twice as high in the 3'----5' direction as in the 5'----3' direction. The products by 3'----5' activity were mononucleotides alone. The 5'----3' activity released mononucleotides as main products and small amounts of di-, tri-, tetra- and oligonucleotides. Another major endonuclease endogenous to the nuclei, a Ca2+/Mg2(+)-dependent endonuclease, did not have such exonuclease activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号